Rocky Mountain Journal of Mathematics

On Ideals in Banach Spaces

T.S.S.R.K. Rao

Full-text: Open access

Article information

Rocky Mountain J. Math. Volume 31, Number 2 (2001), 595-609.

First available in Project Euclid: 5 June 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Rao, T.S.S.R.K. On Ideals in Banach Spaces. Rocky Mountain J. Math. 31 (2001), no. 2, 595--609. doi:10.1216/rmjm/1020171577.

Export citation


  • R. Cilia, A remark on the Dunford-Pettis property in $L_1(\mu,X)$, Proc. Amer. Math. Soc. 120 (1994), 183-184.
  • J.A. de Reyna, et al., Some observations about the space of weakly continuous functions from a compact space into a Banach space, Quaestiones Math. 15 (1992), 415-425.
  • J. Diestel and J.J. Uhl, Vector measures, American Math. Society, Providence, 1977.
  • L. Drewnowski and G. Emmanuele, The problem of complementability for some spaces of vector measures of bounded variation with values in Banach spaces containing copies of $c_0$, Studia Math. 104 (1993), 111-123.
  • G. Emmanuele, Addendum to ``Remarks on weak compactness of operators defined on certain injective tensor products, Proc. Amer. Math. Soc. 118 (1993), 335.
  • N. Ghoussoub, et al., Some topological and geometrical structures in Banach spaces, Memoirs Amer. Math. Soc. 378 Providence, RI, 1987.
  • G. Godefroy, N.J. Kalton and P. Saphar, Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13-59.
  • J. Johnson, Remarks on Banach spaces of compact operators, J. Funct. Anal. 32 (1979), 304-311.
  • P. Harmand, D. Werner and W. Werner, $M$-ideals in Banach spaces and Banach algebras, Lecture Notes in Math., 1547, Springer-Verlag, Berlin, 1993.
  • H.E. Lacey, The isometric theory of classical Banach spaces, Springer-Verlag, Berlin, 1974.
  • Å. Lima, The metric approximation property, norm-one projections and intersection property of balls, Israel J. Math. 84 (1993), 451-475.
  • T.S.S.R.K. Rao, $L^1(\mu,X)$ as a complemented subspace of its bidual, Proc. Indian Acad. Sci. (Math. Sci.) 104 (1994), 421-424.
  • --------, $M$ structure and the space $A(K,E)$, Rend. Mat. Appl. (7) 15 (1995), 153-160.
  • T.S.S.R.K. Rao, A.K. Roy and K. Sundaresan, Intersection properties of balls in tensor products of some Banach spaces, Math. Scand. 65 (1989), 103-118.
  • W. Ruess, Duality and geometry of spaces of compact operators, Proc. Paderborn Conf. Funct. Anal., Survey and Recent Results III (K. Bierstedt and B. Fuchssteiner, eds.), North-Holland Math. Stud. 90 (1984), 59-78.
  • E. Saab and P. Saab, A stability property of a class of Banach spaces not containing a complemented copy of $l_1$, Proc. Amer. Math. Soc. 84 (1982), 44-46.
  • --------, On unconditionally converging and weakly precompact operators, Illinois J. Math. 35 (1991), 522-531.
  • --------, Extensions of some classes of operators and applications, Rocky Mountain J. Math. 23 (1993), 319-337.
  • P. Saab, Integral representations by boundary vector measure, Canad. Math. Bull. 25 (1982), 164-168.
  • M. Sharir, Extremal structure in operator spaces, Trans. Amer. Math. Soc. 186 (1975), 91-111.
  • B. Sims and D. Yost, Linear Hahn-Banach extension operators, Proc. Edinburgh Math. Soc. (2) 32 (1989), 53-57.