Rocky Mountain Journal of Mathematics

Bifurcations of Bounded Solutions of Ordinary Differential Equations Depending on a Parameter

Yu Shu-Xiang

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 34, Number 3 (2004), 1191-1196.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1181069850

Digital Object Identifier
doi:10.1216/rmjm/1181069850

Mathematical Reviews number (MathSciNet)
MR2087454

Zentralblatt MATH identifier
1066.34036

Subjects
Primary: 34C

Keywords
Bifurcations bounded solutions connecting orbits isolating blocks

Citation

Shu-Xiang, Yu. Bifurcations of Bounded Solutions of Ordinary Differential Equations Depending on a Parameter. Rocky Mountain J. Math. 34 (2004), no. 3, 1191--1196. doi:10.1216/rmjm/1181069850. https://projecteuclid.org/euclid.rmjm/1181069850


Export citation

References

  • C. Conley, Isolated invariant sets and the Morse index, Conf. Board Math. Sci., vol. 38, Amer. Math. Soc., Providence, 1978.
  • C. Conley and R. Easton, Isolated invariant sets and isolating blocks, Trans. Amer. Math. Soc. 158 (1971), 35-61.
  • M. Izydorek and S. Rybicki, Bifurcations of bounded solutions of $1$-parameter ODE's, J. Differential Equations 130 (1996), 267-276.
  • Yu Shu-Xiang, The existence of trajectories joining critical points, J. Differential Equations 66 (1987), 230-242.