Rocky Mountain Journal of Mathematics

A New Integral Representation of the Riemann Zeta Function

Wu Yun-Fei

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 34, Number 3 (2004), 1177-1189.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1181069849

Digital Object Identifier
doi:10.1216/rmjm/1181069849

Mathematical Reviews number (MathSciNet)
MR2087453

Zentralblatt MATH identifier
1172.11306

Subjects
Primary: 11M

Keywords
Integral representations series Riemann zeta function residue theorem

Citation

Yun-Fei, Wu. A New Integral Representation of the Riemann Zeta Function. Rocky Mountain J. Math. 34 (2004), no. 3, 1177--1189. doi:10.1216/rmjm/1181069849. https://projecteuclid.org/euclid.rmjm/1181069849


Export citation

References

  • Aleksandar Ivić, The Riemann zeta-function, New York, 1985.
  • J. Tennenbaum, On the function $\sum^\infty_n=0(\z(n+2)/n!)x^n$, Math. Scand. 41 (1977), 242-248.
  • E.C. Titchmarsh, The theory of the Riemann zeta function, 2nd ed., 1986.
  • Yunfei Wu, Series $\sum^\infty_n=1(1/n^k+1)e^-z^2k/n^2k$ and Riemann zeta function, J. Math Research Exposition 20 (1986), 122 (in Chinese).
  • --------, Series $\sum^\infty_n=1n^2t/(n^2k+x^2k)$ and Riemann zeta function, Heilongjiang Daxue Xuebao 7 (1990), 25-29 (in Chinese).
  • Nanyue Zhang, Series $\sum^\infty_n=1(1/n^2)e^-z^2/n^2$ and Riemann zeta function, Acta Math. Sinica 26 (1983), 736-744. MR 86e:11071.
  • Nanyue Zhang and Kenneth S. Williams, Application of the Hurwitz zeta function to the evaluation of certain integrals, Canad. Math. Bull. 36 (1993), 373-384.