Rocky Mountain Journal of Mathematics

On Impulsive Time-Varying Systems with Unbounded Time- Varying Point Delays: Stability and Compactness of the Relevant Operators Mapping the Inupt Space into the State and Output Spaces

M. De la Sen

Full-text: Open access

Article information

Source
Rocky Mountain J. Math., Volume 37, Number 1 (2007), 79-129.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
https://projecteuclid.org/euclid.rmjm/1181069321

Digital Object Identifier
doi:10.1216/rmjm/1181069321

Mathematical Reviews number (MathSciNet)
MR2316439

Zentralblatt MATH identifier
1160.34071

Subjects
Primary: 34A36: Discontinuous equations 93C23: Systems governed by functional-differential equations [See also 34K35] 34A45: Theoretical approximation of solutions {For numerical analysis, see 65Lxx} 93D05: Lyapunov and other classical stabilities (Lagrange, Poisson, $L^p, l^p$, etc.) 93D20: Asymptotic stability 93B42

Keywords
Compact operators time-delay dynamic systems stability time-varying dynamic systems

Citation

De la Sen, M. On Impulsive Time-Varying Systems with Unbounded Time- Varying Point Delays: Stability and Compactness of the Relevant Operators Mapping the Inupt Space into the State and Output Spaces. Rocky Mountain J. Math. 37 (2007), no. 1, 79--129. doi:10.1216/rmjm/1181069321. https://projecteuclid.org/euclid.rmjm/1181069321


Export citation

References

  • R.P. Agarwal, Difference equations and inequalities: Theory, methods and applications, Marcel Dekker, New York, 1992.
  • A.K. Agrawall and J.N. Yang, Compensation of time-delay for control of civil engineering structures, Earthquake Engrg. Struct. Dynam. 29 (2000), 37-62.
  • N.I. Akhiezer and I.M. Glazman, Theory of linear operators in Hilbert space, Frederick Ungar Pub. Co., New York, 1963; reprinted by Dover Inc., New York, 1993.
  • B. Aziz, Nonlinear robust control problems of parabolic type equations with time-varying delays given in the integral form, J. Dynam. Control Systems 9 (2003), 489-512.
  • H. Brézis, Analyse fonctionelle, Masson, Paris, 1983.
  • T.A. Burton, Stability and periodic solutions of ordinary and differential equations, Elsevier, New York, %Series Mathematics in Science and Technology, 1985.
  • T. Caraballo, J.A. Langa and J.C. Robinson, Attractors for differential equations with variable delays, J. Math. Anal. Appl. 260 (2001), 421-438.
  • M. De la Sen, The use of Gronwall's lemma for robust compensation of time-varying linear systems, Internat. J. Systems Sci. 22 (1991), 885-903.
  • M. De la Sen and V. Etxebarria, Discretized models and use of multirate sampling for finite spectrum assignment in linear systems with commensurate time-delays, Nonlinear Anal. Appl. 38 (1999), 193-228.
  • M. De la Sen and Ningsu Luo, A note on the stability of linear time-delay systems with impulsive inputs, IEEE Trans. Circuits Systems I Fund. Theory Appl. 50 (2003), 149-152.
  • --------, On the uniform exponential stability of a wide class of linear time-delay systems, J. Math. Anal. Appl. 289 (2004), 456-476.
  • T. Faria, W. Huang and J. Wu, Smoothness of center manifolds for maps and formal adjoints for semilinear FDES in generic Banach spaces, SIAM J. Math. Anal. 34 (2002), 173-203.
  • L.E. Franks, Signal theory, Prentice Hall, Englewood Cliffs, 1975.
  • Z. Gang Zeng, J. Wang and X. Liao, Global exponential stability of neural networks with time-varying delays, IEEE Trans. Circuits Systems I Fund. Theory Appl. 50 (2003), 1353-1358.
  • Z. Gang Zeng, J. Wang and X. Liao, Stability of neural networks with time-varying delays, Dyn. Contin. Discrete Impuls. Syst. 10 (2003), 340-345.
  • P. Ioannou and A. Datta, Robust adaptive control: Design, analysis and robustness bounds, in Foundations of adaptive control (M. Thoma and A. Wyner, eds.), Lecture Notes in Control and Inform. Sci. (P.V. Kokotovic, ed.), No. 160, Springer-Verlag, Berlin, 1991.
  • J. Jugo and M. De la Sen, Input-output based pole-placement controller for a class of time-delay systems, IEEE Proc. Control Theory Appl. 149 (2002), 323-330.
  • S. Larsson, V. Thomée and L.B. Wahlbin, Numerical solutions of parabolic integro-differential equations by the discontinuous Galerkin method, Math. Comp. 67 (1998), 45-71.
  • B. Lehman and S.P. Weibel, Averaging theory for delay difference equations with time-varying delays, SIAM J. Appl. Math., 5 (1999), 1487-1506.
  • Ningsu Luo and M. De la Sen, State feedback sliding mode control of a class of uncertain time-delay systems, IEEE Proc. Control Theory Appl. 140 (1993), 456-476.
  • M.C. Memory, Stable and unstable manifolds for practical functional differential equations, Nonlinear Anal. 16 (1991), 131-142.
  • S.I. Nakagiri, Structural properties of functional differential equations in Banach spaces, Osaka J. Math. 25 (1988), 353-398.
  • V.A. Oliveira, M.C.M. Teixeira and L. Cossi, Stabilizing a class of time-delay systems using the Hermite-Biehler theorem, Linear Algebra Appl. 369 (2003), 203-216.
  • S. Oucheriah, Exponential stabilization of linear delayed systems, IEEE Trans. Circuits Systems I Fund. Theory Appl. 50 (2003), 826-830.
  • V. Ngoc Phat, Stabilization of linear continuous time-varying systems with state delays in Hilbert spaces, Electron. J. Differential Equations 2001 (2001), 1-13.
  • J.P. Richard, Time-delay systems: An overview of some recent advances and open problems, Automatica 39 (2003), 1667-1694.
  • F. Zheng and P.M. Frank, Finite dimensional variable structure control design for distributed delay systems, Internat. J. Control 74 (2001), 398-408.