Revista Matemática Iberoamericana

A new hypoelliptic operator on almost CR manifolds

Raphaël Ponge

Full-text: Open access

Abstract

The aim of this paper is to present the construction, out of the Kohn-Rossi complex, of a new hypoelliptic operator $Q_L$ on almost CR manifolds equipped with a real structure. The operator acts on all $(p,q)$-forms, but when restricted to $(p,0)$-forms and $(p,n)$-forms it is a sum of squares up to sign factor and lower order terms. Therefore, only a finite type condition condition is needed to have hypoellipticity on those forms. However, outside these forms $Q_L$ may fail to be hypoelliptic, as it is shown in the example of the Heisenberg group $\mathbb{H}^{5}$.

Article information

Source
Rev. Mat. Iberoamericana, Volume 27, Number 2 (2011), 393-414.

Dates
First available in Project Euclid: 10 June 2011

Permanent link to this document
https://projecteuclid.org/euclid.rmi/1307713032

Mathematical Reviews number (MathSciNet)
MR2848525

Zentralblatt MATH identifier
1262.32042

Subjects
Primary: 35H10: Hypoelliptic equations
Secondary: 32W10: $\overline\partial_b$ and $\overline\partial_b$-Neumann operators 32V35: Finite type conditions on CR manifolds 32V05: CR structures, CR operators, and generalizations 53D10: Contact manifolds, general 35S05: Pseudodifferential operators

Keywords
hypoelliptic operators $\overline{\partial}_b$-operator finite type condition CR structures contact geometry pseudodifferential operators

Citation

Ponge, Raphaël. A new hypoelliptic operator on almost CR manifolds. Rev. Mat. Iberoamericana 27 (2011), no. 2, 393--414. https://projecteuclid.org/euclid.rmi/1307713032


Export citation

References

  • Ali, S.T. and Engliš, M.: Quantization methods: a guide for physicists and analysts. Rev. Math. Phys. 17 (2005), no. 4, 391-490.
  • Baouendi, M.S., Rothschild, L.P. and Trèves, F.: CR structures with group action and extendability of CR functions. Invent. Math. 82 (1985), 359-396.
  • Beals, R. and Greiner, P.C.: Calculus on Heisenberg manifolds. Annals of Math. Studies 119. Princeton University Press, Princeton, NJ, 1988.
  • Christ, M.: Regularity properties of the $\overline\partial_b$ equation on weakly pseudoconvex CR manifolds of dimension 3. J. Amer. Math. Soc. 1 (1988), 587-646.
  • Christ, M.: On the $\overline\partial_b$ equation for three-dimensional CR manifolds. In Several complex variables and complex geometry, Part 3 (Santa Cruz, CA, 1989), 63-82. Proc. Symposia Pure Math. 52, Part 3. Amer. Math. Soc., Providence, RI, 1991.
  • Connes, A. and Moscovici, H.: The local index formula in noncommutative geometry. Geom. Funct. Anal. 5 (1995), no. 2, 174-243.
  • Fefferman, C. and Kohn, J.J.: Hölder estimates on domains of complex dimension two and on three dimensional CR manifolds. Adv. in Math. 69 (1988), 233-303.
  • Fefferman, C., Kohn, J.J. and Machedon, M.: Hölder estimates on CR manifolds with a diagonalizable Levi form. Adv. Math. 84 (1990), 1-90.
  • Folland, G.: Subelliptic estimates and function spaces on nilpotent Lie groups. Ark. Mat. 13 (1975), 161-207.
  • Folland, G. and Stein, E.M.: Estimates for the $\bar \partial_b$ complex and analysis on the Heisenberg group. Comm. Pure Appl. Math. 27 (1974), 429-522.
  • Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119 (1967), 147-171.
  • Kaup, W. and Zaitsev, D.: On symmetric Cauchy-Riemann manifolds. Adv. Math. 149 (2000), no. 2, 145-181.
  • Koenig, K.D.: On maximal Sobolev and Hölder estimates for the tangential Cauchy-Riemann operator and boundary Laplacian. Amer. J. Math. 124 (2002), no. 1, 129-197.
  • Kohn, J.J.: Boundaries of complex manifolds. In 1965 Proc. Conf. Complex Analysis (Minneapolis, 1964), 81-94. Springer, Berlin.
  • Kohn, J.J.: Estimates for $\overline\partial_b$ on pseudoconvex CR manifolds. In Pseudodifferential operators and applications (Notre Dame, Ind., 1984), 207-217. Proc. Symposia Pure Math. 43. Amer. Math. Soc., Providence, RI, 1985.
  • Kohn, J.J. and Rossi, H.: On the extension of holomorphic functions from the boundary of a complex manifold. Ann. of Math. (2) 81 (1965), 451-472.
  • Nagel, A. and Stein, E.M.: The $\overline\partial_b$-complex on decoupled boundaries in $\mathbb C^n$. Ann. of Math. (2) 164 (2006), no. 2, 649-713.
  • Ponge, R.: Géométrie spectrale et formules d'indices locales pour les variétés CR et contact. C.R. Acad. Sci. Paris Sér. I Math. 332 (2001), 735-738.
  • Rothschild, L.P. and Stein, E.M.: Hypoelliptic differential operators and nilpotent groups. Acta Math. 137 (1976), 247-320.
  • Rothschild, L.P. and Tartakoff, D.: Parametrices with $C^\infty$-error for $\square_b$ and operators of Hörmander type. In Partial differential equations and geometry (Proc. Conf., Park City, Utah, 1977), 255-271. Lecture Notes in Pure and Appl. Math. 48. Dekker, New York, 1979.
  • Taylor, M.E.: Noncommutative microlocal analysis. I. Mem. Amer. Math. Soc. 52 (1984), no. 313.
  • Woodhouse, N.: Geometric quantization. Oxford Mathematical Monographs. The Clarendon Press, Oxford Univ. Press, New York, 1992.