Revista Matemática Iberoamericana

Universal objects in categories of reproducing kernels

Daniel Beltiţă and José E. Galé

Full-text: Open access

Abstract

We continue our earlier investigation on generalized reproducing kernels, in connection with the complex geometry of $C^*$- algebra representations, by looking at them as the objects of an appropriate category. Thus the correspondence between reproducing $(-*)$-kernels and the associated Hilbert spaces of sections of vector bundles is made into a functor. We construct reproducing $(-*)$-kernels with universality properties with respect to the operation of pull-back. We show how completely positive maps can be regarded as pull-backs of universal ones linked to the tautological bundle over the Grassmann manifold of the Hilbert space $\ell^2(\mathbb{N})$.

Article information

Source
Rev. Mat. Iberoamericana, Volume 27, Number 1 (2011), 123-179.

Dates
First available in Project Euclid: 4 February 2011

Permanent link to this document
https://projecteuclid.org/euclid.rmi/1296828831

Mathematical Reviews number (MathSciNet)
MR2815734

Zentralblatt MATH identifier
1234.46026

Subjects
Primary: 46E22: Hilbert spaces with reproducing kernels (= [proper] functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces) [See also 47B32]
Secondary: 47B32: Operators in reproducing-kernel Hilbert spaces (including de Branges, de Branges-Rovnyak, and other structured spaces) [See also 46E22] 46L05: General theory of $C^*$-algebras 18A05: Definitions, generalizations 58B12: Questions of holomorphy [See also 32-XX, 46G20]

Keywords
reproducing kernel category theory vector bundle tautological bundle Grassmann manifold completely positive map universal object

Citation

Beltiţă, Daniel; Galé, José E. Universal objects in categories of reproducing kernels. Rev. Mat. Iberoamericana 27 (2011), no. 1, 123--179. https://projecteuclid.org/euclid.rmi/1296828831


Export citation

References

  • Alpay, D. and Levanony, D.: On the reproducing kernel Hilbert spaces associated with the fractional and bi-fractional Brownian motions. Potential Anal. 28 (2008), 163-184.
  • Aronszajn, N.: Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 (1950), 337-404.
  • Beltiţă, D. and Galé, J.E.: Holomorphic geometric models for representations of $C^*$-algebras. J. Funct. Anal. 255 (2008), 2888-2932.
  • Beltiţă, D. and Galé, J.E.: On complex infinite-dimensional Grassmann manifolds. Complex Anal. Oper. Theory 3 (2009), no. 4, 739-758.
  • Beltiţă, D. and Ratiu, T.S.: Geometric representation theory for unitary groups of operator algebras. Adv. Math. 208 (2007), no. 1, 299-317.
  • Bertram, W. and Hilgert, J.: Reproducing kernels on vector bundles. In Lie Theory and Its Applications in Physics III, 43-58. World Scientific, Singapore, 1998.
  • Carmeli, C., De Vito, E., Toigo, A. and Umanità, V.: Vector valued reproducing kernel Hilbert spaces and universality. Anal. Appl. (Singap.) 8 (2010), no. 1, 19-61.
  • Choi, M.D. and Effros, E.G.: Injectivity and operator spaces. J. Functional Analysis 24 (1977), no. 2, 156-209.
  • Dupré, M.J., Evard, J.-C. and Glazebrook, J.F.: Smooth parametrization of subspaces in a Banach space. Rev. Un. Mat. Argentina 41 (1998), no. 2, 1-13.
  • Dupré, M.J. and Glazebrook, J.F.: The Stiefel bundle of a Banach algebra. Integral Equations Operator Theory 41 (2001), no. 3, 264-287.
  • Dupré, M.J. and Glazebrook, J.F.: Holomorphic framings for projections in a Banach algebra. Georgian Math. J. 9 (2002), no. 3, 481-494.
  • Effros, E.G. and Ruan, Zh.-J.: Operator Spaces. London Mathematical Society Monographs. New Series, 23. The Clarendon Press, Oxford University Press, New York, 2000.
  • Faraut, J. and Thomas, E.G.F.: Invariant Hilbert spaces of holomorphic functions. J. Lie Theory 9 (1999), no. 2, 383-402.
  • Galé, J.E.: Geometría de órbitas de representaciones de grupos y álgebras promediables. Rev. R. Acad. Cienc. Exactas Fís. Quím. Nat. Zaragoza (2) 61 (2006), 7-46.
  • Halmos, P.R.: A Hilbert space problem book (second edition, revised and enlarged). Graduate Texts in Mathematics 19. Springer-Verlag, New York-Heidelberg-Berlin, 1982.
  • Kobayashi, S.: Irreducibility of certain unitary representations. J. Math. Soc. Japan 20 (1968), 638-642.
  • Krantz, S.G.: A tale of three kernels. Complex Var. Elliptic Equ. 53 (2008), no. 11, 1059-1082.
  • Krantz, S.G.: On a construction of L. Hua for positive reproducing kernels. Michigan Math. J. 59 (2010), no. 1, 211-230.
  • Kunze, R.: Positive definite operator valued kernels and unitary representations. In Functional Analysis (Proc. Conf., Irvine, Calif., 1966), 235-247. Academic Press, London; Thompson Book, Washington, D.C., 1967.
  • Martin, M. and Salinas, N.: Flag manifolds and the Cowen-Douglas theory. J. Operator Theory 38 (1997), no. 2, 329-365.
  • Lang, S.: Fundamentals of differential geometry (corrected 2nd printing). Graduate Texts in Mathematics 191. Springer-Verlag, New-York, 2001.
  • Monastyrski, M. and Pasternak-Winiarski, Z.: Maps on complex manifolds into Grassmann spaces defined by reproducing kernels of Bergman type. Demonstratio Math. 30 (1997), no. 2, 465-474.
  • Neeb, K.-H.: Holomorphy and convexity in Lie theory. De Gruyter Expositions in Mathematics 28. Walter de Gruyter, Berlin, 2000.
  • Odzijewicz, A.: On reproducing kernels and quantization of states. Comm. Math. Phys. 114 (1988), no. 4, 577-597.
  • Odzijewicz, A.: Coherent states and geometric quantization. Comm. Math. Phys. 150 (1992), no. 2, 385-413.
  • Paulsen, V.: Completely bounded maps and operator algebras. Cambridge Studies in Advanced Mathematics 78. Cambridge University Press, Cambridge, 2002.
  • Raeburn, I.: The relationship between a commutative Banach algebra and its maximal ideal space. J. Functional Analysis 25 (1977), no. 4, 366-390.
  • Upmeier, H.: Symmetric Banach Manifolds and Jordan $C^*$-algebras. North-Holland Mathematics Studies 104. Notas de Matemática 96. North-Holland Publishing Co., Amsterdam, 1985.
  • Wells, R.O., Jr.: Differential analysis on complex manifolds (second edition). Graduate Texts in Mathematics 65. Springer-Verlag, New York-Berlin, 1980.
  • Zuccante, R.: Completely positive maps of the Cuntz algebras. J. Funct. Anal. 145 (1997), no. 1, 35-43.