Revista Matemática Iberoamericana

Elliptic equations in the plane satisfying a Carleson measure condition

Martin Dindoš and David J. Rule

Full-text: Open access

Abstract

In this paper we settle (in dimension $n=2$) the open question whether for a divergence form equation $\div (A\nabla u) = 0$ with coefficients satisfying certain minimal smoothness assumption (a Carleson measure condition), the $L^p$ Neumann and Dirichlet regularity problems are solvable for some values of $p\in (1,\infty)$. The related question for the $L^p$ Dirichlet problem was settled (in any dimension) in 2001 by Kenig and Pipher [Kenig, C.E. and Pipher, J.: The Dirichlet problem for elliptic equations with drift terms. Publ. Mat. 45 (2001), no. 1, 199-217].

Article information

Source
Rev. Mat. Iberoamericana Volume 26, Number 3 (2010), 1013-1034.

Dates
First available in Project Euclid: 27 August 2010

Permanent link to this document
https://projecteuclid.org/euclid.rmi/1282913830

Mathematical Reviews number (MathSciNet)
MR2789374

Zentralblatt MATH identifier
1206.35101

Subjects
Primary: 35J25: Boundary value problems for second-order elliptic equations
Secondary: 35J67: Boundary values of solutions to elliptic equations

Keywords
elliptic equations Carleson measure condition Neumann problem regularity problem distributional inequalities inhomogeneous equation

Citation

Dindoš , Martin; Rule , David J. Elliptic equations in the plane satisfying a Carleson measure condition. Rev. Mat. Iberoamericana 26 (2010), no. 3, 1013--1034.https://projecteuclid.org/euclid.rmi/1282913830


Export citation

References

  • Coifman, R.R., Meyer, Y. and Stein, E.M.: Some new function spaces and their applications to harmonic analysis. J. Funct. Anal. 62 (1985), no. 2, 304-335.
  • Dahlberg, B.E.J.: On the Poisson integral for Lipschitz and $C^1$-domains. Studia Math. 66 (1979), no. 1, 13-24.
  • Dahlberg, B.E.J.: Approximation of harmonic functions. Ann. Inst. Fourier (Grenoble) 30 (1980), no. 2, 97-107.
  • Dahlberg, B.E.J.: Weighted norm inequalities for the Lusin area integral and the nontangential maximal functions for functions harmonic in a Lipschitz domain. Sudia Math. 67 (1980), no. 3, 297-314.
  • Dahlberg, B.E.J., Kenig, C.E., Pipher, J. and Verchota, G.C.: Area integral estimates for higher order elliptic equations and systems. Ann. Inst. Fourier (Grenoble) 47 (1997), no. 5, 1425-1461.
  • Dindoš, M., Petermichl, S. and Pipher, J.: The $L^p$ Dirichlet problem for second order elliptic operators and a $p$-adapted square function. J. Funct. Anal. 249 (2007), no. 2, 372-392.
  • Gilbarg, D. and Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Heidelberg, 1997.
  • Grafakos, L.: Classical and Modern Fourier Analysis. Pearson Education, Upper Saddle River, NJ, 2004.
  • Jerison, D.S. and Kenig, C.E.: The Neumann problem on Lipschitz domains. Bull. Amer. Math. Soc. 4 (1981), no. 2, 203-207.
  • Kenig, C.E., Koch, H., Pipher, J. and Toro, T.: A new approach to absolute continuity of elliptic measure, with applications to non-symmetric equations. Adv. Math. 153 (2000), no. 2, 231-298.
  • Kenig, C.E. and Pipher, J.: The Dirichlet problem for elliptic equations with drift terms. Publ. Mat. 45 (2001), no. 1, 199-217.
  • Kenig, C.E. and Rule, D.J.: The regularity and Neumann problem for non-symmetric elliptic operators. Trans. Amer. Math. Soc. 361 (2009), no. 1, 125-160.
  • Nečas, J.: Les méthodes directes en théorie des équations elliptiques. Masson et Cie, Éditeurs, Paris; Academia, Éditeurs, Prague, 1967.
  • Pipher, J.: Littlewood-Paley estimates: Some applications to elliptic boundary value problems. In Partial differential equations and their applications (Toronto, ON, 1995), 221-238. CRM Proc. Lecture Notes 12. Amer. Math. Soc., Providence, RI, 1997.
  • Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals. Princeton Mathematical Series 43. Princeton University Press, Princeton, NJ, 1993.