Revista Matemática Iberoamericana

The Howe dual pair in Hermitean Clifford analysis

Fred Brackx , Hennie De Schepper , David Eelbode , and Vladimir Souček

Full-text: Open access

Abstract

Clifford analysis offers a higher dimensional function theory studying the null solutions of the rotation invariant, vector valued, first order Dirac operator $\partial$. In the more recent branch Hermitean Clifford analysis, this rotational invariance has been broken by introducing a complex structure $J$ on Euclidean space and a corresponding second Dirac operator $\partial_J$, leading to the system of equations $\partial f = 0 = \partial_J f$ expressing so-called Hermitean monogenicity. The invariance of this system is reduced to the unitary group. In this paper we show that this choice of equations is fully justified. Indeed, constructing the Howe dual for the action of the unitary group on the space of all spinor valued polynomials, the generators of the resulting Lie superalgebra reveal the natural set of equations to be considered in this context, which exactly coincide with the chosen ones.

Article information

Source
Rev. Mat. Iberoamericana, Volume 26, Number 2 (2010), 449-479.

Dates
First available in Project Euclid: 4 June 2010

Permanent link to this document
https://projecteuclid.org/euclid.rmi/1275671308

Mathematical Reviews number (MathSciNet)
MR2677004

Zentralblatt MATH identifier
1201.30061

Subjects
Primary: 22E46: Semisimple Lie groups and their representations 30G35: Functions of hypercomplex variables and generalized variables 15A66: Clifford algebras, spinors

Keywords
Hermitean Clifford analysis Howe dual pair

Citation

Brackx, Fred; De Schepper, Hennie; Eelbode, David; Souček, Vladimir. The Howe dual pair in Hermitean Clifford analysis. Rev. Mat. Iberoamericana 26 (2010), no. 2, 449--479. https://projecteuclid.org/euclid.rmi/1275671308


Export citation

References

  • Brackx, F., Bureš, J., De Schepper, H., Eelbode, D., Sommen, F. and Souček, V.: Fundaments of Hermitean Clifford analysis. I. Complex structure. Compl. Anal. Oper. Theory 1 (2007), no. 3, 341-365.
  • Brackx, F., Bureš, J., De Schepper, H., Eelbode, D., Sommen, F. and Souček, V.: Fundaments of Hermitean Clifford analysis. II. Splitting of $h$-monogenic equations. Complex Var. Elliptic Equ. 52 (2007), no. 10-11, 1063-1079.
  • Brackx, F., Delanghe, R. and Sommen, F.: Clifford analysis. Research Notes in Mathematics 76. Pitman, Boston, MA, 1982.
  • Brackx, F., De Knock, B., De Schepper, H., and Sommen, F.: On Cauchy and Martinelli-Bochner integral formulae in Hermitean Clifford analysis. Bull. Braz. Math. Soc. (N.S.) 40 (2009), no. 3, 395-416.
  • Brackx, F., De Knock, B., De Schepper, H.: A matrix Hilbert transform in Hermitean Clifford analysis. J. Math. Anal. Appl. 344 (2008), no. 2, 1068-1078.
  • Brackx, F., De Schepper, H., De Schepper, N. and Sommen, F.: Hermitean Clifford-Hermite polynomials. Adv. Appl. Clifford Algebr. 17 (2007), no. 3, 311-330.
  • Brackx, F., De Schepper, H. and Sommen, F.: The Hermitian Clifford analysis toolbox. Adv. Appl. Clifford Algebr. 18 (2008), no. 3-4, 451-487.
  • Brackx, F., De Schepper, H. and Sommen, F.: A theoretical framework for wavelet analysis in a Hermitean Clifford setting. Commun. Pure Appl. Anal. 6 (2007), no. 3, 549-567.
  • Colombo, F., Sabadini, I., Sommen, F. and Struppa, D.C.: Analysis of Dirac systems and computational algebra. Progress in Mathematical Physics 39. Birkhäuser Boston, Boston, MA, 2004.
  • Delanghe, R., Sommen, F. and Souček, V.: Clifford algebra and spinor-valued functions, a function theory for the Dirac operator. Kluwer Academic Publishers, Dordrecht, 1992.
  • Eelbode, D.: Stirling numbers and spin-Euler polynomials. Experiment. Math. 16 (2007), no. 1, 55-66.
  • Eelbode, D.: Irreducible $\mathfraksl(m)$-modules of Hermitean monogenics. Complex Var. Elliptic Equ. 53 (2008), no. 10, 975-987.
  • Fulton, W. and Harris, J.: Representation theory. A first course, 3rd edition. Springer Verlag, New York, 1996.
  • Gilbert, J. and Murray, M.: Clifford algebra and Dirac operators in Harmonic analysis. Cambridge Studies in Advanced Mathematics 26. Cambridge University Press, Cambridge, 1991.
  • Goodman, R. and Wallach, N.R.: Representations and invariants of the classical groups. Encyclopedia of Mathematics and its Applications 68. Cambridge University Press, Cambridge, 1998.
  • Goodman, R.: Multiplicity-free spaces and the Schur-Weyl-Howe duality. In Representations of real and p-adic Groups, 305-415. Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. 2. World Scientific, Singapore, 2004.
  • Gürlebeck, K. and Sprössig, W.: Quaternionic and Clifford calculus for physicists and engineers. J. Wiley & Sons, Chichester, 1997.
  • Howe, R.: Transcending classical invariant theory. J. Amer. Math. Soc. 2 (1989), no. 3, 535-552.
  • Howe, R.: Remarks on classical invariant theory. Trans. Amer. Math. Soc. 313 (1989), no. 2, 539-570.
  • Howe, R.: Dual pairs in physics: harmonic oscillators, photons, electrons, and singletons. In Applications of groups theory in physics and mahtematical physics (Chicago, 1982), 179-207. Lectures in Appl. Math. 21. Amer. Math. Soc., Providence, RI, 1985.
  • Rocha-Chavez, R., Shapiro, M. and Sommen, F.: Integral theorems for functions and differential forms in $\mathbbC_m$. Chapman & Hall/CRC Research Notes in Mathematics 428. Chapman&Hall / CRC, Boca Raton, FL, 2002.
  • Sabadini, I. and Sommen, F.: Hermitian Clifford analysis and resolutions. Math. Methods Appl. Sci. 25 (2002), no. 16-18, 1395-1413.
  • Sommen, F. and Peña Peña, D.: A Martinelli-Bochner formula for the Hermitian Dirac equation. Math. Methods Appl. Sci. 30 (2007), no. 9, 1049-1055.