Revista Matemática Iberoamericana

Real analytic parameter dependence of solutions of differential equations

Paweł Domański

Full-text: Open access

Abstract

We consider the problem of real analytic parameter dependence of solutions of the linear partial differential equation $P(D)u=f$, i.e., the question if for every family $(f\sb\lambda)\subseteq \mathscr{D}'(\Omega)$ of distributions depending in a real analytic way on $\lambda\in U$, $U$ a real analytic manifold, there is a family of solutions $(u\sb\lambda)\subseteq \dio$ also depending analytically on $\lambda$ such that $$ P(D)u\sb\lambda=f\sb\lambda\qquad \text{for every $\lambda\in U$}, $$ where $\Omega\subseteq \mathbb{R}\sp d$ an open set. For general surjective variable coefficients operators or operators acting on currents over a smooth manifold we give a solution in terms of an abstract ``Hadamard three circle property'' for the kernel of the operator. The obtained condition is evaluated giving the full solution (usually in terms of the symbol) for operators with constant coefficients and open (convex) $\Omega\subseteq\mathbb{R}\sp d$ if $P(D)$ is of one of the following types: 1) elliptic, 2) hypoelliptic, 3) homogeneous, 4) of two variables, 5) of order two or 6) if $P(D)$ is the system of Cauchy-Riemann equations. An analogous problem is solved for convolution operators of one variable. In all enumerated cases, it follows that the solution is in the affirmative if and only if $P(D)$ has a linear continuous right inverse which shows a striking difference comparing with analogous smooth or holomorphic parameter dependence problems. The paper contains the whole theory working also for operators on Beurling ultradistributions $\mathscr{D}'\sb{(\omega)}$. We prove a characterization of surjectivity of tensor products of general surjective linear operators on a wide class of spaces containing most of the natural spaces of classical analysis.

Article information

Source
Rev. Mat. Iberoamericana, Volume 26, Number 1 (2010), 175-238.

Dates
First available in Project Euclid: 16 February 2010

Permanent link to this document
https://projecteuclid.org/euclid.rmi/1266330122

Mathematical Reviews number (MathSciNet)
MR2666313

Zentralblatt MATH identifier
1207.35050

Subjects
Primary: 35B30: Dependence of solutions on initial and boundary data, parameters [See also 37Cxx] 35E20: General theory 46F05: Topological linear spaces of test functions, distributions and ultradistributions [See also 46E10, 46E35]
Secondary: 32U05: Plurisubharmonic functions and generalizations [See also 31C10] 58A25: Currents [See also 32C30, 53C65] 46A63: Topological invariants ((DN), ($\Omega$), etc.) 46A13: Spaces defined by inductive or projective limits (LB, LF, etc.) [See also 46M40] 46E10: Topological linear spaces of continuous, differentiable or analytic functions 46M18: Homological methods (exact sequences, right inverses, lifting, etc.)

Keywords
analytic dependence on parameters linear partial differential operator convolution operator linear partial differential equation with constant coefficients injective tensor product surjectivity of tensorized operators space of distributions currents space of ultradistributions in the sense of Beurling functor $\operatorname{Proj}\sp 1$ PLS-space locally convex space vector valued equation solvability

Citation

Domański, Paweł. Real analytic parameter dependence of solutions of differential equations. Rev. Mat. Iberoamericana 26 (2010), no. 1, 175--238. https://projecteuclid.org/euclid.rmi/1266330122


Export citation

References

  • Alexiewicz, A. and Orlicz, W.: On analytic vector-valued functions of a real variable. Studia Math. 12 (1951), 108-111.
  • Bergh, J. and Löfström, J.: Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften 223. Springer-Verlag, Berlin-New York, 1976.
  • Bierstedt, K.D. and Meise, R.: Induktive Limites gewichteter Räume stetiger und holomorpher Funktionen. J. Reine Angew. Math. 282 (1976), 186-220.
  • Bonet, J. and Domański, P.: Real analytic curves in Fréchet spaces and their duals. Monatsh. Math. 126 (1998), 13-36.
  • Bonet, J. and Domański, P.: Parameter dependence of solutions of partial differential equations in spaces of real analytic functions. Proc. Amer. Math. Soc. 129 (2001), 495-503.
  • Bonet, J. and Domański, P.: Parameter dependence of solutions of differential equations on spaces of distributions and the splitting of short exact sequences. J. Funct. Anal. 230 (2006), 329-381.
  • Bonet, J. and Domański, P.: The structure of spaces of quasianalytic functions of Roumieu type. Arch. Math. (Basel) 89 (2007), 430-441.
  • Bonet, J. and Domański, P.: The splitting of exact sequences of PLS-spaces and smooth dependence of solutions of linear partial differential equations. Adv. Math. 217 (2008), 561-585.
  • Bonet, J., Meise, R. and Melikhov, S.N.: A comparison of two different ways to define classes of ultradifferentiable functions. Bull. Belg. Math. Simon Stevin 14 (2007), 425-444.
  • Braun, R.W. and Meise, R.: Generalized Fourier expansions for zero-solutions of surjective convolution operators on $\mathscrD'_(\omega)(\mathbbR)$. Arch. Math. (Basel) 55 (1990), 55-63.
  • Braun, R.W., Meise, R. and Taylor, B.A.: Ultradifferentiable functions and Fourier analysis. Results Math. 17 (1990), 207-237.
  • Braun, R.W., Meise, R. and Taylor, B.A.: Characterization of the linear partial differential equations that admit solution operators on Gevrey classes. J. Reine Angew. Math. 588 (2005), 169-220.
  • Browder, F.E.: Analyticity and partial differential equations. I. Amer. J. Math. 84 (1962), 666-710.
  • Cartan, H.: Variétés analytiques réelles et variétés analytiques complexes. Bull. Soc. Math. France 85 (1957), 77-99.
  • Cascales, B. and Orihuela, J.: Metrizability of precompact subsets in $(LF)$-spaces. Proc. Roy. Soc. Edinburgh Sect. A 103 (1986), 293-299.
  • De Christoforis, M.L.: Soluzioni con lacune di certi operatori differenziali lineari. Rend. Accad. Naz. Sci. XL Mem. Mat. (5) 8 (1984), 137-142.
  • Dierolf, S.: On spaces of continuous linear mappings between locally convex spaces. Note Mat. 5 (1985), 147-255.
  • Domański, P.: Classical PLS-spaces: spaces of distributions, real analytic functions and their relatives. In Orlicz centenary volume, 51-70. Banach Center Publ. 64. Polish Acad. Sci., Warsaw, 2004.
  • Domański, P. and Langenbruch, M.: Composition operators on spaces of real analytic functions. Math. Nachr. 254-255 (2003), 68-86.
  • Domański, P. and Langenbruch, M.: Vector valued hyperfunctions and boundary values of vector valued harmonic and holomorphic functions. Publ. Res. Inst. Math. Sci. 44 (2008), no. 4, 1097-1142.
  • Domański, P. and Mastyło, M.: Characterization of splitting for Fréchet-Hilbert spaces via interpolation. Math. Ann. 339 (2007), 317-340.
  • Domański, P. and Vogt, D.: A splitting theory for the space of distributions. Studia Math. 140 (2000), 57-77.
  • Domański, P. and Vogt, D.: Distributional complexes split for positive dimensions. J. Reine Angew. Math. 522 (2000), 63-79.
  • Domański, P. and Vogt, D.: The space of real analytic functions has no basis. Studia Math. 142 (2000), 187-200.
  • Federer, H.: Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften 153. Springer-Verlag, New York, 1969.
  • Franken, U.: On the equivalence of holomorphic and plurisubharmonic Phragmén-Lindelöf principles. Michigan Math. J. 42 (1995), no. 1, 163-173.
  • Franken, U. and Meise, R.: Generalized Fourier expansions for zero-solutions of surjective convolution operators on $\mathscrD'(\mathbbR)$ and $\mathscrD'_(\omega)(\mathbbR)$. Note Mat. 10 (1990), suppl. 1, 251-272 (1992).
  • Frerick, L.: A splitting theorem for nuclear Fréchet spaces. In Functional analysis (Trier, 1994), 163-167. Walter de Gruyter, Berlin, 1996.
  • Frerick, L., Kunkle, D. and Wengenroth, J.: The projective limit functor for spectra of webbed spaces. Studia Math. 158 (2003), 117-129.
  • Frerick, L. and Wengenroth, J.: A sufficient condition for the vanishing of the derived projective limit functor. Arch. Math. (Basel) 67 (1996), 296-301.
  • Grauert, H.: On Levi's problem and the imbedding of real analytic manifolds. Ann. of Math. (2) 68 (1958), 460-472.
  • Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc. 16 (1955).
  • Hansen, S.: Das Fundamentalprinzip für Systeme linearer partieller Differentialgleichungen mit konstanten Koeffizienten. Habilitationsschrift. Paderborn, 1982.
  • Hirsch, M.W.: Differential topology. Graduate Texts in Mathematics 33. Springer-Verlag, New York-Heidelberg, 1976.
  • Hörmander, L.: On the existence of real analytic solutions of partial differential equations with constant coefficients. Invent. Math. 21 (1973), 151-182.
  • Hörmander, L.: The analysis of linear partial differential operators. Springer, Berlin 1983.
  • Jarchow, H.: Locally convex spaces. B. G. Teubner, Stuttgart, 1981.
  • Klimek, M.: Pluripotential theory. London Mathematical Society Monographs New Series 6. Oxford University Press, New York, 1991.
  • Komatsu, H.: Ultradistributions. I. Structure theorems and characterization. J. Fac. Sci. Univ. Tokyo Sect. IA. Math. 20 (1973), 25-105.
  • Kriegl, A. and Michor, P.W.: The convenient setting for real analytic mappings. Acta Math. 165 (1990), 105-159.
  • Kriegl, A. and Michor, P.W.: The convenient setting of global analysis. Mathematical Surveys and Monographs 53. American Mathematical Society, Providence, RI, 1997.
  • Langenbruch, M.: Continuous linear right inverses for convolution operators in spaces of real analytic functions. Studia Math. 110 (1994), 65-82.
  • Luecking, D.H. and Rubel, L.A.: Complex analysis. A functional analysis approach. Universitext. Springer-Verlag, New York, 1984.
  • Mantlik, F.: Partial differential operators depending analytically on a parameter. Ann. Inst. Fourier (Grenoble) 41 (1991), 577-599.
  • Mantlik, F.: Linear equations depending differentiably on a parameter. Integral Equations Operator Theory 13 (1990), 231-250.
  • Mantlik, F.: Fundamental solutions for hypoelliptic differential operators depending analytically on a parameter. Trans. Amer. Math. Soc. 334 (1992), 245-257.
  • Martineau, A.: Sur la topologie des espaces de fonctions holomorphes. Math. Ann. 163 (1966), 62-88.
  • Meise, R., Taylor, B.A. and Vogt, D.: Characterization of the linear partial differential operators with constant coefficients that admit a continuous linear right inverse. Ann. Inst. Fourier (Grenoble) 40 (1990), 619-655.
  • Meise, R., Taylor, B.A. and Vogt, D.: Equivalence of analytic and plurisubharmonic Phragmén-Lindelöf conditions. In Several complex variables and complex geometry, Part 3 (Santa Cruz, CA, 1989), 287-308. Proc. Sympos. Pure Math. 52, Part 3. Amer. Math. Soc., Providence, RI, 1991.
  • Meise, R., Taylor, B.A. and Vogt, D.: Continuous linear right inverses for partial differential operators with constant coefficients and Phragmén-Lindelöf conditions. In: Functional analysis (Essen, 1991), 357-389. Lecture Notes in Pure and Appl. Math. 150. Dekker, New York, 1994.
  • Meise, R., Taylor, B.A. and Vogt, D.: Extremal plurisubharmonic functions of linear growth on algebraic varieties. Math. Z. 219 (1995), 515-537.
  • Meise, R., Taylor, B.A. and Vogt, D.: Continuous linear right inverses for partial differential operators on non-quasianalytic classes and on ultradistributions. Math. Nachr. 180 (1996), 213-242.
  • Meise, R., Taylor, B.A. and Vogt, D.: Continuous linear right inverses for partial differential operators of order 2 and fundamental solutions in half spaces. Manuscripta Math. 90 (1996), 449-464.
  • Meise, R., Taylor, B.A. and Vogt, D.: $\omega$-Hyperbolicity of linear partial differential operators with constant coefficients. In Complex analysis, harmonic analysis and applications (Bordeaux, 1995), 157-182. Pitman Res. Notes Math. Ser. 347. Longman, Harlow, 1996.
  • Meise, R., Taylor, B.A. and Vogt, D.: Phragmén-Lindelöf principles on algebraic varieties. J. Amer. Math. Soc. 11 (1998), 1-39.
  • Meise, R. and Vogt, D.: Characterization of convolution operators on spaces of $C^\infty$-functions admitting a continuous linear right inverse. Math. Ann. 279 (1987), 141-155.
  • Meise, R. and Vogt, D.: Introduction to functional analysis. Oxford Graduate Texts in Mathematics 2. The Clarendon Press, Oxford University Press, New York, 1997.
  • Meyer, T.: Surjectivity of convolution operators on spaces of ultradifferentiable functions of Roumieu type. Studia Math. 125 (1997), 101-129.
  • Mitjagin, B.S. and Henkin, G.M.: Linear problems of complex analysis. Uspekhi Mat. Nauk 26 (1971), no. 4 (160), 93-152 (Russian). English translation Russian Math. Surv. 26 (1971), 99-164.
  • Narasimhan, R.: Analysis on real and complex manifolds. Advanced Studies in Pure Mathematics 1. North-Holland, Amsterdam, 1968.
  • Ovchinnikov, V.I.: The methods of orbits in interpolation theory. Math. Rep. 1 (1984), i-x and 349-515.
  • Palamodov, V.P.: Linear differential operators with constant coefficients. Nauka, Moscow, 1967 (Russian). English transl.: Die Grundlehren der mathematischen Wissenschaften 168. Springer-Verlag, New York-Berlin, 1970.
  • Palamodov, V.P.: Functor of projective limit in the category of topological vector spaces. Mat. Sb. 75 (1968), 567-603 (Russian). English translation: Math. USSR Sbornik 17 (1972), 289-315.
  • Palamodov, V.P.: Homological methods in the theory of locally convex spaces. Uspekhi Mat. Nauk 26 (1971), no. 1 (157), 3-66 (Russian). English transl.: Russian Math. Surveys 26 (1) (1971), 1-64.
  • Palamodov, V.P.: On a Stein manifold the Dolbeault complex splits in positive dimensions. Mat. Sb. (N.S.) 88 (1972), 287-315 (Russian). English transl.: Math. USSR Sbornik 17 (1972) 289-315.
  • Petzsche, H.J.: Some results of Mittag-Leffler-type for vector valued functions and spaces of class $\cal A$. In Functional analysis: surveys and recent results, II (Proc. Second Conf. Functional Anal., Univ. Paderborn, Paderborn, 1979), 183-204. North-Holland Math. Stud. 38. North-Holland, Amsterdam-New York, 1980.
  • Piszczek, K.: On a property of PLS-spaces inherited by their tensor products. Bull. Belg. Math. Soc. Simon Stevin (to appear).
  • Poly, J.B.: Sur les opérateurs différentiels et les morphismes directs. C. R. Acad. Sci. Paris Sér. A-B 270 (1970), A647-A649.
  • Rodino, L.: Linear partial differential operators in Gevrey spaces. World Scientific Publishing, River Edge, NJ, 1993.
  • Rösner, T.: Surjektivität partieller Differentialoperatoren auf quasianalytischen Roumieu-Klassen. Dissertation, Düsseldorf, 1997.
  • Schwartz, L.: Théorie des distributions à valeurs vectorielles. I, II. Ann. Inst. Fourier 7 (1957), 1-141, 8 (1958), 1-209.
  • Trèves, F.: Un théorème sur les équations aux dérivées partielles à coefficients constants dépendant de paramètres. Bull. Soc. Math. France 90 (1962), 473-486.
  • Trèves, F.: Fundamental solutions of linear partial differential equations with constant coefficients depending on parameters. Amer. J. Math. 84 (1962), 561-577.
  • Varol, O.: On the derived tensor product functors for (DF)- and Fréchet spaces. Studia Math. 180 (2007), 41-71.
  • Vogt, D.: Eine Charakterisierung der Potenzreihenräume von endlichem Typ und ihre Folgerungen. Manuscripta Math. 37 (1982), 269-301.
  • Vogt, D.: Sequence space representations of spaces of test functions and distributions. In Functional analysis, holomorphy, and approximation theory (Rio de Janeiro, 1979), 405-443. Lecture Notes Pure Appl. Math. 83. Marcel Dekker, New York 1983.
  • Vogt, D.: Some results on continuous linear maps between Fréchet spaces. In Functional analysis: surveys and recent results, III (Paderborn, 1983), 349-381. North-Holland Math. Stud. 90. North-Holland, Amsterdam, 1984.
  • Vogt, D.: Lectures on projective spectra of DF-spaces. Seminar Lectures, AG Funktionalanalysis, Düsseldorf/Wuppertal, 1987.
  • Vogt, D.: Topics on projective spectra of LB-spaces. In Advances in the theory of Fréchet Spaces (Istanbul, 1988), 11-27. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 287. Kluwer Acad. Publ., Dordrecht, 1989.
  • Vogt, D.: Invariants and spaces of zero solutions of linear partial differential operators. Arch. Math. (Basel) 87 (2006), 163-171.
  • Vogt, D.: Extension operators for real analytic functions on compact subvarieties of $\mathbbR^d$. J. Reine Angew. Math. 606 (2007), 217-233.
  • Vogt, D. and Wagner, M.J.: Charakterisierung der Unterräume und Quiotientenräume der nuklearen stabilen Potenzreihenräume von unendlichem Typ. Studia Math. 70 (1981), 63-80.
  • Wengenroth, J.: Derived functors in functional analysis. Lecture Notes in Mathematics 1810. Springer-Verlag, Berlin, 2003.