Revista Matemática Iberoamericana

A variant of compressed sensing

Basarab Matei and Yves Meyer

Full-text: Open access


The famous Nyquist-Shannon sampling theorem has been recently improved by A. Olevskii and A. Ulanovskii. The present contribution is aimed at bridging the gap between their advance on irregular sampling and what is named "compressed sensing" in signal processing.

Article information

Rev. Mat. Iberoamericana, Volume 25, Number 2 (2009), 669-692.

First available in Project Euclid: 13 October 2009

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 42B10: Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
Secondary: 42C30: Completeness of sets of functions

Fourier expansions compressed sensing irregular sampling


Matei, Basarab; Meyer, Yves. A variant of compressed sensing. Rev. Mat. Iberoamericana 25 (2009), no. 2, 669--692.

Export citation


  • Beurling, A.: Interpolation for an interval on $\R$. In \libroThe Collected works of A. Beurling, Vol. 2, 351--365. Lennart Carleson Ed., Birkhäuser, 1989.
  • Coifman, R. and Weiss, G.: \libroTransference methods in analysis. Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics 31. American Mathematical Society, Providence, R.I., 1976.
  • Landau, H. J.: Necessary density conditions for sampling and interpolation of certain entire functions. istaActa Math. 117 (1967), 37--52.
  • Meyer, Y.: Nombres de Pisot, nombres de Salem et analyse harmonique. Lecture Notes in Mathematics 117. Springer-Verlag, Berlin-New York, 1970.
  • Meyer, Y.: Trois problèmes sur les sommes trigonométriques. Astérisque 1. Société Mathématique de France, Paris, 1973.
  • Olevskii, A. and Ulanovskii, A.: Universal sampling of band-limited signals. istaC.R.Math. Acad. Sci. Paris 342 (2006), no. 12, 927--931.
  • Olevskii, A. and Ulanovskii, A.: Universal sampling and interpolation of band-limited signals. istaGeom. Funct. Anal. 18 (2008), no. 3, 1029--1052.
  • Tao, T.: An uncertainty principle for cyclic groups of prime order. istaMath. Res. Lett. 12 (2005), no. 1, 121--127.