Revista Matemática Iberoamericana

$h^1$, bmo, blo and Littlewood-Paley $g$-functions with non-doubling measures

Guoen Hu , Dachun Yang , and Dongyong Yang

Full-text: Open access

Abstract

Let $\mu$ be a nonnegative Radon measure on ${\mathbb R}^d$ which satisfies the growth condition that there exist constants $C_0 > 0$ and $n\in(0,d]$ such that for all $x\in{\mathbb R}^d$ and $r > 0$, $\mu(B(x,\,r)) \le C_0 r^n$, where $B(x,r)$ is the open ball centered at $x$ and having radius $r$. In this paper, we introduce a local atomic Hardy space ${h_{\rm atb}^{1,\infty}(\mu)}$, a local BMO-type space ${\mathop\mathrm{rbmo}(\mu)}$ and a local BLO-type space ${\mathop\mathrm{rblo}(\mu)}$ in the spirit of Goldberg and establish some useful characterizations for these spaces. Especially, we prove that the space ${\mathop\mathrm{rbmo}(\mu)}$ satisfies a John-Nirenberg inequality and its predual is ${h_{\rm atb}^{1,\infty}(\mu)}$. We also establish some useful properties of ${\mathop\mathrm{RBLO}\,(\mu)}$ and improve the known characterization theorems of ${\mathop\mathrm{RBLO}(\mu)}$ in terms of the natural maximal function by removing the assumption on the regularity condition. Moreover, the relations of these local spaces with known corresponding function spaces are also presented. As applications, we prove that the inhomogeneous Littlewood-Paley $g$-function $g(f)$ of Tolsa is bounded from ${h_{\rm atb}^{1,\infty}(\mu)}$ to ${L^1(\mu)}$, and that $[g(f)]^2$ is bounded from ${\mathop\mathrm{rbmo}(\mu)}$ to ${\mathop\mathrm{rblo}(\mu)}$.

Article information

Source
Rev. Mat. Iberoamericana, Volume 25, Number 2 (2009), 595-667.

Dates
First available in Project Euclid: 13 October 2009

Permanent link to this document
https://projecteuclid.org/euclid.rmi/1255440069

Mathematical Reviews number (MathSciNet)
MR2569548

Zentralblatt MATH identifier
1179.42018

Subjects
Primary: 42B35: Function spaces arising in harmonic analysis
Secondary: 42B25: Maximal functions, Littlewood-Paley theory 42B30: $H^p$-spaces 47A30: Norms (inequalities, more than one norm, etc.) 43A99: None of the above, but in this section

Keywords
non-doubling measure approximation of the identity maximal operator John-Nirenberg inequality duality cube of generation $g$-function RBMO$(\mu)$ rbmo$(\mu)$ RBLO$(\mu)$ rblo$(\mu)$ $H^1(\mu)$ $h_{\rm atb}^{1,\fz}(\mu)$

Citation

Hu, Guoen; Yang, Dachun; Yang, Dongyong. $h^1$, bmo, blo and Littlewood-Paley $g$-functions with non-doubling measures. Rev. Mat. Iberoamericana 25 (2009), no. 2, 595--667. https://projecteuclid.org/euclid.rmi/1255440069


Export citation

References

  • Bennett, C.: Another characterization of BLO. Proc. Amer. Math. Soc. 85 (1982), 552-556.
  • Bennett, C., DeVore, R.A. and Sharpley, R.: Weak-$L^\infty$ and BMO. Ann. of Math. (2) 113 (1981), 601-611.
  • Chen, W., Meng, Y. and Yang, D.: Calderón-Zygmund operators on Hardy spaces without the doubling condition. Proc. Amer. Math. Soc. 133 (2005), 2671-2680 (electronic).
  • Goldberg, D.: A local version of real Hardy spaces. Duke Math. J. 46 (1979), 27-42.
  • García-Cuerva, J. and Rubio de Francia, J.L.: Weighted norm inequalities and related topics. North-Holland Mathematics Studies 116. North-Holland Publishing Co., Amsterdam, 1985.
  • Hu, G., Meng, Y. and Yang, D.: New atomic characterization of $H\sp 1$ space with non-doubling measures and its applications. Math. Proc. Cambridge Philos. Soc. 138 (2005), 151-171.
  • Jiang, Y.: Spaces of type BLO for non-doubling measures. Proc. Amer. Math. Soc. 133 (2005), 2101-2107 (electronic).
  • Journé, J.-L.: Calderón-Zygmund operators, pseudodifferential operators and the Cauchy integral of Calderón. Lecture Notes in Math. 994. Springer-Verlag, Berlin, 1983.
  • Leckband, M.: A note on exponential integrability and pointwise estimates of Littlewood-Paley functions. Proc. Amer. Math. Soc. 109 (1990), 185-194.
  • Mateu, J., Mattila, P., Nicolau, A. and Orobitg, J.: BMO for nondoubling measures. Duke Math. J. 102 (2000), 533-565.
  • Nazarov, F., Treil, S. and Volberg, A.: Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces. Internat. Math. Res. Notices 1997, no 15, 703-726.
  • Nazarov, F., Treil, S. and Volberg, A.: Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces. Internat. Math. Res. Notices 1998, no. 9, 463-487.
  • Nazarov, F., Treil, S. and Volberg, A.: Accretive system $Tb$-theorems on nonhomogeneous spaces. Duke Math. J. 113 (2002), 259-312.
  • Nazarov, F., Treil, S. and Volberg, A.: The $Tb$-theorem on non-homogeneous spaces. Acta Math. 190 (2003), 151-239.
  • Ou, W.: The natural maximal operator on BMO. Proc. Amer. Math. Soc. 129 (2001), 2919-2921 (electronic).
  • Tolsa, X.: BMO, $H^1$, and Calderón-Zygmund operators for non doubling measures. Math. Ann. 319 (2001), 89-149.
  • Tolsa, X.: Littlewood-Paley theory and the $T(1)$ theorem with non-doubling measures. Adv. Math. 164 (2001), 57-116.
  • Tolsa, X.: The space $H^1$ for nondoubling measures in terms of a grand maximal operator. Trans. Amer. Math. Soc. 355 (2003), 315-348.
  • Tolsa, X.: Painlevé's problem and the semiadditivity of analytic capacity. Acta Math. 190 (2003), 105-149.
  • Tolsa, X.: The semiadditivity of continuous analytic capacity and the inner boundary conjecture. Amer. J. Math. 126 (2004), 523-567.
  • Tolsa, X.: Analytic capacity and Calderón-Zygmund theory with non doubling measures. In Seminar of Mathematical Analysis, 239-271. Colecc. Abierta 71. Univ. Sevilla Secr. Publ., Seville, 2004.
  • Tolsa, X.: Bilipschitz maps, analytic capacity, and the Cauchy integral. Ann. of Math. (2) 162 (2005), 1243-1304.
  • Tolsa, X.: Painlevé's problem and analytic capacity. Collect. Math. 2006, Vol. Extra, 89-125.
  • Verdera, J.: The fall of the doubling condition in Calderón-Zygmund theory. Publ. Mat. 2002, Vol. Extra, 275-292.
  • Volberg, A.: Calderón-Zygmund capacities and operators on nonhomogeneous spaces. CBMS Regional Conference Series in Mathematics 100. Amer. Math. Soc., Providence, RI, 2003.
  • Yang, D.: Local Hardy and BMO spaces on non-homogeneous spaces. J. Aust. Math. Soc. 79 (2005), 149-182.
  • Yang, Da. and Yang, Do.: Endpoint estimates for homogeneous Littlewood-Paley $g$-functions with non-doubling measures. J. Funct. Spaces Appl. (to appear).
  • Yang, Da. and Yang, Do.: Uniform boundedness for approximations of the identity with nondoubling measures. J. Inequal. Appl. 2007, Art. ID 19574, 25 pp.
  • Yosida, K.: Functional analysis. Springer-Verlag, 1999.