Revista Matemática Iberoamericana

Large scale Sobolev inequalities on metric measure spaces and applications

Romain Tessera

Full-text: Open access


For functions on a metric measure space, we introduce a notion of ``gradient at a given scale''. This allows us to define Sobolev inequalities at a given scale. We prove that satisfying a Sobolev inequality at a large enough scale is invariant under large-scale equivalence, a metric-measure version of coarse equivalence. We prove that for a Riemmanian manifold satisfying a local Poincaré inequality, our notion of Sobolev inequalities at large scale is equivalent to its classical version. These notions provide a natural and efficient point of view to study the relations between the large time on-diagonal behavior of random walks and the isoperimetry of the space. Specializing our main result to locally compact groups, we obtain that the $L^p$-isoperimetric profile, for every $1\leq p\leq \infty$ is invariant under quasi-isometry between amenable unimodular compactly generated locally compact groups. A qualitative application of this new approach is a very general characterization of the existence of a spectral gap on a quasi-transitive measure space $X$, providing a natural point of view to understand this phenomenon.

Article information

Rev. Mat. Iberoamericana, Volume 24, Number 3 (2008), 825-864.

First available in Project Euclid: 9 December 2008

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 20F65: Geometric group theory [See also 05C25, 20E08, 57Mxx] 22A10: Analysis on general topological groups

large-scale analysis on metric spaces coarse equivalence symmetric random walks on groups Sobolev inequalities isoperimetry


Tessera, Romain. Large scale Sobolev inequalities on metric measure spaces and applications. Rev. Mat. Iberoamericana 24 (2008), no. 3, 825--864.

Export citation


  • Brooks, R.: The fundamental group and the spectrum of the Laplacian. Comm. Math. Helv. 56 (1981), 581-598.
  • Chavel, I.: Riemannian geometry: a modern introduction. Cambridge Tracts in Mathematics 108. Cambridge University Press, Cambridge, 1993.
  • Chavel, I. and Feldman, E.: Modified isoperimetric constants, and large time heat diffusion in Riemannian manifolds. Duke Math. J. 64 (1991), no. 3, 473-499.
  • Coulhon, T.: Dimension à l'infini d'un semi-groupe analytique. Bull. Sci. Math. 114 (1990), 485-500.
  • Coulhon, T.: Espaces de Lipschitz et inégalités de Poincaré. J. Funct. Anal. 136 (1996), 81-113.
  • Coulhon, T.: Random walks and geometry on infinite graphs. In Lecture notes on analysis on metric spaces (Trento, 1999), 5-36. Appunti Corsi Tenuti Docenti Sc., Scuola Norm. Sup., Pisa, 2000.
  • Coulhon, T.: Heat kernel and isoperimetry on non-compact Riemannian manifolds. In Heat kernels and analysis on manifolds, graphs and metric spaces (Paris, 2002), 65-99. Contemp. Math. 338. Amer. Math. Soc., Providence, RI, 2003.
  • Coulhon, T. and Grigor'yan, A.: On-diagonal lower bounds for heat kernel and Markov chains. Duke Math. J. 89 (1997), 133-199.
  • Coulhon, T. and Ledoux, M.: Isopérimétrie, décroissance du noyau de la chaleur et transformations de Riesz: un contre-exemple. Ark. Mat. 32 (1994), 63-77.
  • Coulhon, T. and Saloff-Coste, L.: Variétés riemanniennes isométriques à l'infini. Rev. Mat. Iberoamericana 11 (1995), no. 3, 687-726.
  • Coulhon, T. and Saloff-Coste, L.: Isopérimétrie pour les groupes et les variétés. Rev. Mat. Iberoamericana 9 (1993), no. 2, 293-314.
  • Grigor'yan, A.: Heat kernel upper bounds on a complete non-compact manifold. Rev. Mat. Iberoamericana 10 (1994), no. 2, 395-452.
  • Gromov, M.: Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53-73.
  • Gromov, M.: Structures métriques pour les variétés riemanniennes. Textes Mathématiques 1. CEDIC, Paris, 1981.
  • Gromov, M.: Infinite groups as geometric objects. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), 385-392. PWN, Warsaw, 1984.
  • Gromov, M.: Asymptotic invariants of infinite groups. In Geometric group theory, Vol. 2 (Sussex, 1991), 1-295. London Math. Soc. Lecture Note Ser. 182. Cambridge Univ. Press, Cambridge, 1993.
  • Heinonen, J.: Lectures on analysis on metric spaces. Universitext. Springer-Verlag, New York, 2001.
  • Hjorth, G.: Classification and orbit equivalence relations. Mathematical Surveys and Monographs 75. American Mathematical Society, Providence, RI, 2000.
  • Kanai, M.: Rough isometries, and combinatorial approximations of geometries of noncompact Riemannian manifolds. J. Math. Soc. Japan 37 (1985), 391-413.
  • Kesten, H.: Symmetric random walks on groups. Trans. Amer. Math. Soc. 92 (1959), 336-354.
  • Pier, J. P.: Amenable locally compact groups. Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1984.
  • Pittet, C.: The isoperimetric profile of homogeneous Riemannian manifolds. J. Differential Geom. 54 (2000), no. 2, 255-302.
  • Pittet, C. and Saloff-Coste, L.: A survey on the relationships between volume growth, isoperimetry, and the behaviour of simple random walk on Cayley graphs, with examples. Unpublished manuscript, 1997.
  • Roe, J.: Lectures on coarse geometry. University Lecture Series 31. American Mathematical Society, Providence, RI, 2003.
  • Saloff-Coste, L.: Analysis on Riemannian co-compact covers. In Surveys in differential Geometry IX, 351-384. International Press, Sommerville, MA, 2004.
  • Saloff-Coste, L. and Woess, W.: Transition operators on co-compact $G$-spaces. Rev. Mat. Iberoamericana 22 (2006), no. 3, 747-799.
  • Salvatori, M.: On the norms of group-invariant transition operators on graphs. J. Theoret. Probab. 5 (1992), 563-576.
  • Semmes, S.: Finding Curves on General Spaces through quantitative topology, with applications for Sobolev and Poincaré inequalities. Selecta Math. (N.S.) 2 (1996), 155-295.
  • Soardi, P. M. and Woess, W.: Amenability, unimodularity, and the spectral radius of random walks on infinite graphs. Math. Z. 205 (1990), 471-486.
  • Tessera, R.: Asymptotic isoperimetry of balls in metric measure spaces. Publ. Math. 50 (2006), no. 2, 315-348.
  • Tessera, R.: Asymptotic isoperimetry on groups and uniform embeddings into Banach spaces. Preprint, 2006. Available at math.GR/0603138.
  • Tessera, R.: Vanishing of the first reduced cohomology with values in a $L^p$-representation. To appear in Ann. Inst. Fourier (Grenoble).
  • Varopoulos, N. Th.: Analysis on Lie groups. J. Funct. Anal. 76 (1988), no. 2, 346-410.