Revista Matemática Iberoamericana

Interpolation and Sampling for Generalized Bergman Spaces on finite Riemann surfaces

Alexander Schuster and Dror Varolin

Full-text: Open access

Abstract

We find sufficient conditions for a discrete sequence to be interpolating or sampling for certain generalized Bergman spaces on open Riemann surfaces. As in previous work of Bendtsson, Ortega-Cerdá, Seip, Wallsten and others, our conditions for interpolation and sampling are as follows: If a certain upper density of the sequence has value less that 1, then the sequence is interpolating, while if a certain lower density has value greater than 1, then the sequence is sampling. Unlike previous works, we introduce a family of densities all of which provide sufficient conditions. Thus we obtain new results even in classical cases, some of which might be useful in industrial applications. The main point of the article is to demonstrate the interaction between the potential theory of the Riemann surface and its interpolation and sampling properties.

Article information

Source
Rev. Mat. Iberoamericana, Volume 24, Number 2 (2008), 499-530.

Dates
First available in Project Euclid: 11 August 2008

Permanent link to this document
https://projecteuclid.org/euclid.rmi/1218475351

Mathematical Reviews number (MathSciNet)
MR2459201

Zentralblatt MATH identifier
1167.30028

Subjects
Primary: 30F99: None of the above, but in this section 30F45: Conformal metrics (hyperbolic, Poincaré, distance functions) 30F45: Conformal metrics (hyperbolic, Poincaré, distance functions)

Keywords
finite Riemann surfaces Green's function Evans kernel Beurling density Ohsawa's theorem

Citation

Schuster, Alexander; Varolin, Dror. Interpolation and Sampling for Generalized Bergman Spaces on finite Riemann surfaces. Rev. Mat. Iberoamericana 24 (2008), no. 2, 499--530. https://projecteuclid.org/euclid.rmi/1218475351


Export citation

References

  • Berndtsson, B. and Ortega Cerdà, J.: On interpolation and sampling in Hilbert spaces of analytic functions. J. Reine Angew. Math. 464 (1995), 109-128.
  • Nakai, M.: On Evans' kernel. Pacific J. Math. 22 (1967), 125-137.
  • Nakai, M. and Sario, L.: Classification theory of Riemann Surfaces. Die Grundlehren der mathematischen Wissenschaften, Band 164. Springer-Verlag, New York-Berlin, 1970.
  • Ohsawa, T.: On the extension of $L^2$ holomorphic functions. IV. A new density concept. In Geometry and Analysis on complex manifolds, 157-170. World Sci. Publ., River Edge, NJ, 1994.
  • Ohsawa, T.: On the extension of $L^2$ holomorphic functions. V. Effects of generalization. Nagoya Math. J. 161 (2001), 1-21. (See also Erratum: Nagoya Math. J. 163 (2001), 229.)
  • Schiffer, M.: The kernel function of an orthonormal system. Duke Math. J. 13 (1946), 529-540.
  • Schiffer, M. and Spencer, D.: Functionals of finite Riemann surfaces. Princeton University Press, Princeton, N. J., 1954.
  • Seip, K.: Density theorems for sampling and interpolation in the Bargmann-Fock space. I. J. Reine Angew. Math. 429 (1992), 91-106.
  • Seip, K.: Beurling type density theorems in the unit disk. Invent. Math. 113 (1993), no. 1, 21-39.
  • Seip, K. and Wallstén, R.: Density theorems for sampling and interpolation in the Bargmann-Fock space. II. J. Reine Angew. Math. 429 (1992), 107-113.