Revista Matemática Iberoamericana

Clifford and Harmonic Analysis on Cylinders and Tori

Rolf Sören Krausshar and John Ryan

Full-text: Open access


Cotangent type functions in $\mathbb{R}^n$ are used to construct Cauchy kernels and Green kernels on the conformally flat manifolds $\mathbb{R}^n / \mathbb{Z}^k$ where $1\leq k\leq n$. Basic properties of these kernels are discussed including introducing a Cauchy formula, Green's formula, Cauchy transform, Poisson kernel, Szegö kernel and Bergman kernel for certain types of domains. Singular Cauchy integrals are also introduced as are associated Plemelj projection operators. These in turn are used to study Hardy spaces in this context. Also the analogues of Calderón-Zygmund type operators are introduced in this context, together with singular Clifford holomorphic, or monogenic, kernels defined on sector domains in the context of cylinders. Fundamental differences in the context of the $n$-torus arising from a double singularity for the generalized Cauchy kernel on the torus are also discussed.

Article information

Rev. Mat. Iberoamericana, Volume 21, Number 1 (2005), 87-110.

First available in Project Euclid: 22 April 2005

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 30G35: Functions of hypercomplex variables and generalized variables 42B30: $H^p$-spaces 53C27: Spin and Spin$^c$ geometry 58J32: Boundary value problems on manifolds

Dirac operator Clifford analysis cotangent functions


Krausshar, Rolf Sören; Ryan, John. Clifford and Harmonic Analysis on Cylinders and Tori. Rev. Mat. Iberoamericana 21 (2005), no. 1, 87--110.

Export citation


  • Ahlfors, L.V.: Möbius transformations in $\mathbbR^n$ expressed through $2\times 2$ matrices of Clifford numbers. Complex Variables Theory Appl. 5 (1986), 215-224.
  • Bell, S.: The Cauchy transform, potential theory and conformal mapping. Studies in Advanced Mathematics. CRC Press, Boca Raton, 1992.
  • Bernstein, S. and Lanzani, L.: Szegö projections for Hardy spaces of monogenic functions and applications Int. J. Math. Math. Sci. 29 (2002), no. 10, 613-624.
  • Brackx, F., Delanghe, R. and Sommen, F.: Clifford analysis. Research Notes in Mathematics 76. Pitman, London, 1982.
  • Calderbank, D.: Dirac operators and Clifford analysis on manifolds with boundary. Max Plank Institute for Mathematics, Bonn, preprint number 96-131, 1996.
  • Cnops, J.: Hurwitz pairs and applications of Möbius transformations. Thesis, Ghent State University (Belgium), 1994.
  • Cnops, J.: An Introduction to Dirac Operators on Manifolds. Progress in Mathematical Physics 24. Birkhäuser, Boston, 2002.
  • Constales, D. and Kraußhar, R. S.: Bergman kernels for rectangular domains and multiperiodic functions in Clifford analysis. Math. Methods Appl. Sci. 25 (2002), no. 16-18, 1509-1526.
  • Eisenstein, G.: Genaue Untersuchung der unendlichen Doppelproducte, aus welchen die elliptischen Functionen als Quotienten zusammengesetzt sind, und der mit ihnen zusammenhängenden Doppelreihen (als eine neue Begründung der Theorie der elliptischen Functionen, mit besonderer Berücksichtigung ihrer Analogie zu den Kreisfunctionen). Crelle's Journal 35 (1847), 153-274.
  • Kraußhar, R.S.: Monogenic multiperiodic functions in Clifford analysis. Complex Variables Theory Appl. 46 (2001), no. 4, 337-368.
  • Kraußhar, R.S.: Automorphic forms in Clifford analysis. Complex Var. Theory Appl. 47 (2002), no. 5, 417-440.
  • Laville, G. and Ramadanoff, I.: Elliptic Cliffordian functions. Complex Variables Theory Appl. 45 (2001), no. 4, 297-318.
  • Leutwiler, H.: Modified Clifford analysis. Complex Variables Theory Appl. 17 (1992), 153-171.
  • Li, C., McIntosh, A. and Qian, T.: Clifford algebras, Fourier transforms and singular convolution operators on Lipschitz surfaces. Rev. Mat. Iberoamericana 10 (1994), 665-721.
  • Li, C., McIntosh, A. and Semmes, S.: Convolution singular integrals on Lipschitz surfaces. J. Amer. Math. Soc. 5 (1992), 455-481.
  • Liu, H. and Ryan, J.: Clifford analysis techniques for spherical PDE. J. Fourier Anal. Appl. 8 (2002), no. 6, 535-563.
  • McIntosh, A.: Clifford algebras, Fourier theory, singular integrals, and harmonic functions on Lipschitz domains. In Clifford algebras in analysis and related topics (Fayetteville, AR, 1993), 33-87. Stud. Adv. Math. CRC Press, Boca Raton, FL, 1996.
  • Mitrea, M.: Generalized Dirac operators on nonsmooth manifolds and Maxwell's equations. J. Fourier Anal. Appl. 7 (2001), 207-256.
  • Qian, T.: Singular integrals with monogenic kernels on the $m$-torus and their Lipschitz perturbations. In Clifford algebras in analysis and related topics (Fayetteville, AR, 1993), 157-171. Stud. Adv. Math. CRC Press, Boca Raton, FL, 1996.
  • Qian, T.: Fourier analysis on starlike Lipschitz surfaces. J. Funct. Anal. 183 (2001), 370-412.
  • Ryan, J.: Iterated Dirac operators in $\mathbbC^n$. Z. Anal. Anwendungen 9 (1990), 385-401.
  • Ryan, J.: Conformally covariant operators in Clifford analysis. Z. Anal. Anwendungen 14 (1995), 677-704.
  • Schoen, R. and Yau, S.-T.: Conformally flat manifolds, Kleinian groups and scalar curvature. Invent. Math. 92 (1988), 47-71.
  • Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, 30. Princeton University Press, Princeton, N.J., 1970.
  • Stein, E.M. and Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton Mathematical Series 32. Princeton University Press, Princeton, N.J., 1971.
  • Van Lancker, P.: Clifford analysis on the sphere. PhD thesis. Ghent State University, Belgium, 1996.
  • Van Lancker, P.: Clifford analysis on the sphere. In Clifford algebras and their application in mathematical physics (Aachen, 1996), 201-215. Fund. Theories Phys. 94. Kluwer Acad. Publ., Dordrecht, 1998.