Revista Matemática Iberoamericana

Optimal Orlicz-Sobolev embeddings

Andrea Cianchi

Full-text: Open access

Abstract

An embedding theorem for the Orlicz-Sobolev space $W^{1,A}_{0}(G)$, $G\subset \mathbb{R}^n$, into a space of Orlicz-Lorentz type is established for any given Young function $A$. Such a space is shown to be the best possible among all rearrangement invariant spaces. A version of the theorem for anisotropic spaces is also exhibited. In particular, our results recover and provide a unified framework for various well-known Sobolev type embeddings, including the classical inequalities for the standard Sobolev space $W^{1,p}_{0}(G)$ by O'Neil and by Peetre ($1\leq p< n$), and by Brezis-Wainger and by Hansson ($p=n$).

Article information

Source
Rev. Mat. Iberoamericana, Volume 20, Number 2 (2004), 427-474.

Dates
First available in Project Euclid: 17 June 2004

Permanent link to this document
https://projecteuclid.org/euclid.rmi/1087482022

Mathematical Reviews number (MathSciNet)
MR2073127

Zentralblatt MATH identifier
1061.46031

Subjects
Primary: 46E35: Sobolev spaces and other spaces of "smooth" functions, embedding theorems, trace theorems 46E30: Spaces of measurable functions (Lp-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)

Keywords
Sobolev inequalities Orlicz spaces rearrangement invariant spaces interpolation

Citation

Cianchi, Andrea. Optimal Orlicz-Sobolev embeddings. Rev. Mat. Iberoamericana 20 (2004), no. 2, 427--474. https://projecteuclid.org/euclid.rmi/1087482022


Export citation

References

  • Adams, R. A.: On the Orlicz-Sobolev imbedding theorem. J. Functional Analysis 24 (1977), 241-257.
  • Alvino, A., Ferone, V. and Trombetti, G.: Moser-type inequalities in Lorentz spaces. Potential Anal. 5 (1996), no. 3, 273-299.
  • Bennett, C. and Rudnick, K.: On Lorentz-Zygmund spaces. Dissertationes Math. 175 (1980), 1-72.
  • Bennett, C. and Sharpley, R.: Interpolation of operators. Pure and Applied Mathematics 129. Academic Press, Boston, 1988.
  • Besov, O. V., Il'in, V. P. and Nikolskii, S. M.: Integral representations of functions and embedding theorems. Nauka, Moscow, 1975; English translation: Wiley, New York-Toronto, 1979.
  • Bingham, N. H., Goldie, C. M. and Teugels, J. L.: Regular variation. Encyclopedia of Mathematics and its Applications 27. Cambridge University Press, Cambridge, 1987.
  • Boyd, D. W.: Indices for the Orlicz spaces. Pacific J. Math. 38 (1971), 315-323.
  • Brezis, H. and Wainger, S.: A note on limiting cases of Sobolev embeddings and convolution inequalities. Comm. Partial Differential Equations 5 (1980), no. 7, 773-789.
  • Brothers, J. E. and Ziemer, W. P.: Minimal rearrangements of Sobolev functions. J. Reine Angew. Math 384 (1988), 153-179.
  • Cianchi, A.: A sharp embedding theorem for Orlicz-Sobolev spaces. Indiana Univ. Math. J. 45 (1996), no. 1, 39-65.
  • Cianchi, A.: Boundedness of solutions to variational problems under general growth conditions. Comm. Partial Differential Equations 22 (1997), no. 9-10, 1629-1646.
  • Cianchi, A.: An optimal interpolation theorem of Marcinkiewicz type in Orlicz spaces. J. Funct. Anal. 153 (1998), no. 2, 357-381.
  • Cianchi, A.: Hardy inequalites in Orlicz spaces. Trans. Amer. Math. Soc. 351 (1999), no 6, 2459-2478.
  • Cianchi, A.: A fully anisotropic Sobolev inequality. Pacific J. Math. 196 (2000), no. 2, 283-295.
  • Cwikel, M. and Pustylnik, E.: Sobolev type embeddings in the limiting case. J. Fourier Anal. Appl. 4 (1998), no. 4-5, 433-446.
  • Donaldson, D. T. and Trudinger, N. S.: Orlicz-Sobolev spaces and embedding theorems. J. Functional Analysis 8 (1971), 52-75.
  • Edmunds, D. E., Gurka, P. and Opic, B.: Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces. Indiana Univ. Math. J. 44 (1995), no. 1, 19-43.
  • Edmunds, D. E., Kerman, R. A. and Pick, L.: Optimal Sobolev imbeddings involving rearrangement invariant quasi-norms. J. Funct. Anal. 170 (2000), no. 2, 307-355.
  • Fusco, N., Lions, P. L. and Sbordone, V.: Sobolev embedding theorems in borderline cases. Proc. Amer. Math. Soc. 124 (1996), no. 2, 561-565.
  • Greco, L. and Moscariello, G.: An embedding theorem in Lorentz-Zygmund spaces. Potential Anal. 5 (1996), no. 6, 581-590.
  • Hansson, K.: Imbedding theorems of Sobolev type in potential theory. Math. Scand. 45 (1979), no. 1, 77-102.
  • Klimov, V. S.: Imbedding theorems and geometric inequalities. Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 3, 645-671. Translated in Math. USSR-Izv. 10 (1976), 615-638.
  • Kolyada, V. I.: On the differential properties of the rearrangements of functions. In Progress in Approximation Theory (Tampa, FL, 1990), 333-352. Springer Ser. Comput. Math. 19. Springer, New York, 1992.
  • Maz'ya, V. M.: Sobolev spaces. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1985.
  • O'Neil, R.: Convolution operators in $L(p,q)$ spaces. Duke Math. J. 30 (1963), 129-142.
  • Peetre, J.: Espaces d' interpolation et théorème de Soboleff. Ann. Inst. Fourier 16 (1966), 279-317.
  • Pohozhaev, S. I.: On the imbedding Sobolev theorem for $pl=n$. Doklady Conference, Section Math. Moscow Power Inst. (1965), 158-170 (Russian).
  • Tartar, L.: Imbedding theorems of Sobolev spaces into Lorentz spaces. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1 (1998), no. 3, 479-500.
  • Talenti, G.: An embedding theorem. In Partial differential equations and the calculus of variations, Vol. II, 919-924. Progr. Nonlinear Differential Equations Appl. 2. Birkhäuser, Boston, 1989.
  • Troisi, M.: Teoremi di inclusione per spazi di Sobolev non isotropi. Ricerche Mat. 18 (1969), 3-24.
  • Trudinger, N. S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17 (1967), 473-483.
  • Trudinger, N. S.: An imbedding theorem for $H^0(G,\Omega)$ spaces. Studia Math. 50 (1974), 17-30.
  • Yudovich, V. I.: Some estimates connected with integral operators and with solutions of elliptic equations. Dokl. Akad. Nauk SSSR 138 (1961) 805-808. Translated in Soviet Math. Dokl. 2 (1961), 746-749.
  • Ziemer, W. P.: Weakly differentiable functions. Graduate Texts in Mathematics 120. Springer-Verlag, New York, 1989.