Revista Matemática Iberoamericana

Estimates for multiple stochastic integrals and stochastic Hamilton-Jacobi equations

Vassili N. Kolokol'tsov, René L. Schilling, and Alexei E. Tyukov

Full-text: Open access

Abstract

We study stochastic Hamilton-Jacobi-Bellman equations and the corresponding Hamiltonian systems driven by jump-type Lévy processes. The main objective of the present paper is to show existence, uniqueness and a (locally in time) diffeomorphism property of the solution: the solution trajectory of the system is a diffeomorphism as a function of the initial impulse. This result enables us to implement a stochastic version of the classical method of characteristics for the Hamilton-Jacobi equations. An -in itself interesting- auxiliary result are pointwise a.s. estimates for iterated stochastic integrals driven by a vector of not necessarily independent jump-type semimartingales.

Article information

Source
Rev. Mat. Iberoamericana, Volume 20, Number 2 (2004), 333-380.

Dates
First available in Project Euclid: 17 June 2004

Permanent link to this document
https://projecteuclid.org/euclid.rmi/1087482018

Mathematical Reviews number (MathSciNet)
MR2073123

Zentralblatt MATH identifier
1060.70025

Subjects
Primary: 70H20: Hamilton-Jacobi equations 60H15: Stochastic partial differential equations [See also 35R60] 60H05: Stochastic integrals
Secondary: 60G51: Processes with independent increments; Lévy processes 60J75: Jump processes 70H05: Hamilton's equations

Keywords
stochastic Hamilton-Jacobi equation Hamiltonian system method of stochastic characteristics iterated stochastic integral semimartingale Lévy process

Citation

Kolokol'tsov, Vassili N.; Schilling, René L.; Tyukov, Alexei E. Estimates for multiple stochastic integrals and stochastic Hamilton-Jacobi equations. Rev. Mat. Iberoamericana 20 (2004), no. 2, 333--380. https://projecteuclid.org/euclid.rmi/1087482018


Export citation

References

  • Artin, E.: Einführung in die Theorie der Gammafunktion. Hamburger Mathematische Einzelschriften 1. Verlag B. B. Teubner, Leipzig, 1931.
  • Bertoin, J.: Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge University Press. Cambridge, 1996.
  • Bertoin, J: Some properties of Burgers turbulence with white or stable noise initial data. In Levy processes, 267-279. Birkhäuser, Boston, 2001.
  • Da Prato, G., Debussche, A.: Differentiability of the transition semigroup of the stochastic Burgers equations, and application to the corresponding Hamilton-Jacobi equation. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 9 (1998), 267-277.
  • Jacod, J., Shiryaev, A. N.: Limit Theorems for Stochastic Processes. Grundlehren Math. Wiss. 288. Springer-Verlag, Berlin, 1987.
  • Kolokoltsov, V. N.: Stochastic Hamilton-Jacobi-Bellman equation and stochastic Hamiltonian systems. J. Dynam. Control. Systems 2 (1996), no. 3, 299-319.
  • Kolokoltsov, V. N.: The stochastic HJB Equation and WKB Method.} In Idempotency (Bristol, 1994), 285-302. Publ. Newton Inst. 11. Cambridge Univ. Press, Cambridge, 1998.
  • Kolokoltsov, V. N.: Semiclassical analysis for diffusions and stochastic processes. Lecture Notes in Math. 1724. Springer-Verlag, Berlin, 2000.
  • Kolokoltsov, V. N., Maslov, V. P.: Idempotent analysis and its applications. Math. Appl. Kluwer, Dordrecht, 1997.
  • Kolokoltsov, V. N., Tyukov, A. E.: The rate of escape of Ornstein-Uhlenbeck process and the scattering theory for their perturbations. Markov Process. Related Fields 7 (2001), 603-625.
  • Kolokoltsov, V. N., Tyukov, A. E.: Small time and semiclassical asymptotics for stochastic heat equations driven by a Lévy noise.} Stoch. Stoch. Rep. 75 (2003), no. 1-2, 1-38.
  • Kwapien, S., Woyczynski, W.: Random series and stochastic integrals: single and multiple. Probability and its Applications. Birkhäuser, Boston, MA, 1992.
  • Métivier, M.: Semimartingales. A course on stochastic processes. De Gruyter Studies in Math. 2. Walter de Gruyter, Berlin-New York, 1982.
  • Protter, P.: Stochastic integration and differential equations. A new approach. Applications of Mathematics 21. Springer-Verlag, Berlin, 1990.
  • Rezakhanlou, F.: Central limit theorem for stochastic Hamilton-Jacobi equations. Comm. Math. Phys. 211 (2000), no. 2, 413-438.
  • Rosinski, J., Samorodnitsky, G.: Zero-one laws for multiple stochastic integrals. In Chaos expansions, multiple Wiener-Itô integrals and their applications (Guanajuato, 1992), 233-259. Probab. Stochastics Ser., CRC, Boca Raton, FL, 1994.
  • Sato, K.: Lévy processes and infinitely divisible distributions. Cambridge Studies Adv. Math. 68. Cambridge Univ. Press, Cambridge, 1999.
  • Souganidis, P.: Stochastic homogenization of Hamilton-Jacobi equations and some applications. Asymptot. Anal. 20 (1999), no. 1, 1-11.
  • Szulga, J.: Multiple stochastic integrals with respect to symmetric infinitely divisible random measures. Ann. Probab. 19 (1991), 1145-1156.
  • Takanobu, S.: Multiple stochastic integrals appearing in the stochastic Taylor expansions. J. Math. Soc. Japan 47 (1995), no. 1, 67-92.
  • Truman, A., Zhao, H.: The stochastic Hamilton-Jacobi equation, stochastic heat equations and Schrödinger equations. In Stochastic Analysis and Applications (Powys, 1995), 441-464. World Sci. Publishing, River Edge, NJ, 1996.
  • Truman, A., Zhao, H.: Stochastic Hamilton-Jacobi equation and related topics. In Stochastic partial differential equations (Edinburgh, 1994), 287-303. London Math. Soc. Lecture Note Ser. 216. Cambridge Univ. Press, Cambridge, 1995.