Revista Matemática Iberoamericana

Perturbing plane curve singularities

Eduardo Casas and Rosa Peraire

Full-text: Open access

Abstract

We describe the singularity of all but finitely-many germs in a pencil generated by two germs of plane curve sharing no tangent.

Article information

Source
Rev. Mat. Iberoamericana, Volume 19, Number 2 (2003), 307-323.

Dates
First available in Project Euclid: 8 September 2003

Permanent link to this document
https://projecteuclid.org/euclid.rmi/1063050154

Mathematical Reviews number (MathSciNet)
MR2023186

Zentralblatt MATH identifier
1065.14002

Subjects
Primary: 14B05: Singularities [See also 14E15, 14H20, 14J17, 32Sxx, 58Kxx] 32S15: Equisingularity (topological and analytic) [See also 14E15]

Keywords
equisingularity topological type pencil germ of plane curve

Citation

Casas, Eduardo; Peraire, Rosa. Perturbing plane curve singularities. Rev. Mat. Iberoamericana 19 (2003), no. 2, 307--323. https://projecteuclid.org/euclid.rmi/1063050154


Export citation

References

  • Brieskorn, E. and Knörrer, H.: Plane Algebraic Curves. Birkhäuser, Basel 1986.
  • Casas-Alvero, E.: Infinitely near imposed singularities and singularities of polar curves. Math. Ann. 287 (1990), no. 3, 429-454.
  • Casas-Alvero, E.: Singularities of polar curves. Compositio Math. 89 (1993), 339-359.
  • Casas-Alvero, E.: Singularities of plane curves. London Mathematical Society Lecture Notes Series 276. Cambridge Univ. Press, Cambridge, 2000.
  • Kuo, T.,C. and Lu, Y.,C.: On analytic function germs of two variables. Topology 16 (1977), no. 4, 299-310.
  • Maugendre, H.: Topologie des germes jacobiens. Thèse de Doctorat, Université de Nantes, 1995.
  • Semple, J.,G. and Kneebone, G.,T.: Algebraic curves. Oxford University Press, London-New York, 1959.
  • Teissier, B.: Variétés polaires I. Invariants polaires des singularités d'hypersurfaces. Invent. Math. 40 (1977), no. 3, 267-292.
  • Teissier, B.: Polyèdre de Newton jacobien et equisingularité. In Seminaire sur les singularités, 193-221. Publ. Math. Univ. Paris VII 7, Paris, 1980.
  • Zariski, O.: Studies in equisingularity I. Equivalent singularities of plane algebroid curves. Amer. J. Math 87 (1965), 507-536.