Open Access
2018 The Baire Classification of Strongly Separately Continuous Functions on \(\ell_\infty\)
Olena Karlova, Tomáš Visnyai
Real Anal. Exchange 43(2): 325-332 (2018). DOI: 10.14321/realanalexch.43.2.0325

Abstract

We prove that for any \(\alpha\in[0,\omega_1)\) there exists a strongly separately continuous function \(f:\ell_\infty\rightarrow [0,1]\) such that \(f\) belongs to Baire class \(\alpha+1\), if \(\alpha\) is finite, and Baire class \(\alpha+2\) and \(f\) does not belong to the Baire class \(\alpha\).

Citation

Download Citation

Olena Karlova. Tomáš Visnyai. "The Baire Classification of Strongly Separately Continuous Functions on \(\ell_\infty\)." Real Anal. Exchange 43 (2) 325 - 332, 2018. https://doi.org/10.14321/realanalexch.43.2.0325

Information

Published: 2018
First available in Project Euclid: 27 June 2018

zbMATH: 06924892
MathSciNet: MR3499770
Digital Object Identifier: 10.14321/realanalexch.43.2.0325

Subjects:
Primary: 54C08 , ‎54C30
Secondary: 26B05

Keywords: Baire classification , strongly separately continuous function

Rights: Copyright © 2018 Michigan State University Press

Vol.43 • No. 2 • 2018
Back to Top