Real Analysis Exchange

Uniform Differentiability

Julius V. Benitez, Ferdinand P. Jamil, and Chew Tuan Seng

Full-text: Open access


The concept of uniform differentiability is introduced to characterize sequences of McShane and Henstock equi-integrable functions.

Article information

Real Anal. Exchange, Volume 37, Number 2 (2011), 451-462.

First available in Project Euclid: 15 April 2013

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 26A03: Foundations: limits and generalizations, elementary topology of the line 26A24: Differentiation (functions of one variable): general theory, generalized derivatives, mean-value theorems [See also 28A15]
Secondary: 26A06: One-variable calculus 26A39: Denjoy and Perron integrals, other special integrals 26A42: Integrals of Riemann, Stieltjes and Lebesgue type [See also 28-XX]

McShane integral uniformly strongly differentiable equi-integrability


Benitez, Julius V.; Jamil, Ferdinand P.; Seng, Chew Tuan. Uniform Differentiability. Real Anal. Exchange 37 (2011), no. 2, 451--462.

Export citation


  • R. G. Bartle, The concept of negligible variation, Real Analysis Exchange 23(1) (1997/98) 47–48.
  • C. L. Belna, M. J. Evans and P. D. Hunke, Symmetric and strong differentiation, Amer. Math. Monthly 86 (1979) 121–123.
  • A. M. Bruckner, J. B. Bruckner, and B. S. Thomson, Real Analysis Prentice Hall, 1997.
  • E. Cabral and P. Y. Lee, A Fundamental Theorem of Calculus for the Kurzweil-Henstock Integral in $\R^m$, Real Analsyis Exchange 26(2) (2001) 867–876.
  • T. S. Chew, On Henstock's Inner Variation and Strong Derivatives, Real Analysis Exchange 27 (2001-02) 725–734.
  • M. Esser and O. Shisha, A modified differentiation, Amer. Math. Monthly 71 (1964) 904–906.
  • R. Henstock, Lectures on the Theory of integration, World Scientific, 1988.
  • R. Henstock, The general theory of integration, Oxford Mathematical Monographs, Oxford University Press, 1991.
  • P. Y. Lee, Lanzhou Lectures on Henstock Integration, World Scientific, 1989.
  • P. Y. Lee and R. Yyborny, The integral: an easy approach after Kurzweil and Henstock, Cambridge University Press, 2000.
  • C. Swartz, Introduction to Gauge Integrals, World Scientific, 2001.
  • B. S. Thomson, Derivatives of Interval Functions, Mem. Amer. Math. Soc., 93(452), 1991.
  • J. Kurzweil and S. Schwabik, McShane equi-integrability and Vitali's convergence theorem, Math. Bohem. 129(2) (2004) 141–157.
  • Y. Keren and L. Shipan, Strong derivative and its consequences, J. Math. Study 27 (1994) 191–193.
  • I. Temaj and A. Tato, On McShane equi-integrable sequences, Journal of Modern Mathematics and Statistics 4(4) (2010) 123–126.