Real Analysis Exchange

A monotone C1 function and a Riemann integrable function whose composition is not Riemann integrable

Javier Fernández de Bobadilla de Olazabal

Full-text: Open access

Abstract

In this paper the author constructs a \(C^1\) function \(G\) and a Riemann integrable function \(H\), and shows that the composition \(H \circ G\) is not Riemann integrable.

Article information

Source
Real Anal. Exchange, Volume 22, Number 1 (1996), 404-405.

Dates
First available in Project Euclid: 1 June 2012

Permanent link to this document
https://projecteuclid.org/euclid.rae/1338515233

Mathematical Reviews number (MathSciNet)
MR1433626

Zentralblatt MATH identifier
0879.26037

Subjects
Primary: 26A39: Denjoy and Perron integrals, other special integrals

Keywords
C1 functions Riemann integral

Citation

de Bobadilla de Olazabal, Javier Fernández. A monotone C 1 function and a Riemann integrable function whose composition is not Riemann integrable. Real Anal. Exchange 22 (1996), no. 1, 404--405. https://projecteuclid.org/euclid.rae/1338515233


Export citation