Real Analysis Exchange

Sums of quasicontinuous functions defined on psuedometrizable spaces

Ján Borsík

Full-text: Open access

Abstract

It is shown that each real cliquish function \(f\) defined on a pseudometrizable space is the sum of two quasicontinuous functions. If moreover \(f\) is bounded (in the Baire class \(\alpha\)), then we can take the summands with this property.

Article information

Source
Real Anal. Exchange, Volume 22, Number 1 (1996), 328-337.

Dates
First available in Project Euclid: 1 June 2012

Permanent link to this document
https://projecteuclid.org/euclid.rae/1338515224

Mathematical Reviews number (MathSciNet)
MR1433617

Subjects
Primary: 54C08: Weak and generalized continuity
Secondary: 54C30: Real-valued functions [See also 26-XX]

Keywords
Quasicontinuity Cliquishness Sums

Citation

Borsík, Ján. Sums of quasicontinuous functions defined on psuedometrizable spaces. Real Anal. Exchange 22 (1996), no. 1, 328--337. https://projecteuclid.org/euclid.rae/1338515224


Export citation

References

  • N. Biswas, On some mappings in topological spaces, Bull. Calcutta Math. Soc. 61 (1969), 127–135.
  • J. Borsí k, Sums of quasicontinuous functions, Math. Bohem. 118 (1993), 313–319.
  • J. Borsí k, Algebraic structures generated by real quasicontinuous functions, Tatra Mt. Math. Publ. (to appear).
  • J. Borsí k and J. Doboš, A note on real cliquish functions, Real Analysis Exch. 18 (1992–93), 139–145.
  • Z. Grande, Sur les fonctions cliquish, Časopis P\v est. Mat. 110 (1985), 225–236.
  • Z. Grande, On some representations of a. e. continuous functions, Real Analysis Exch. 21 (1995–96), 175–180.
  • A. Maliszewski, On the sums and the products of quasi-continuous functions, Real Analysis Exch. 20 (1994–95), 418–421.
  • A. Maliszewski, Sums and products of quasi-continuous functions, Real Analysis Exch. 21 (1995–96), 320–329.
  • A. Maliszewski, Darboux Property and Quasi-Continuity. A Uniform Approach, WSP, Slupsk, 1996.
  • T. Neubrunn, Quasi-continuity, Real Analysis Exch. 14 (1988–89), 259–306.
  • E. Strońska, L'espace linéaire des fonctions cliquées sur $\myR^n$ est généré par les fonctions quasi-continues, Math. Slovaca 39 (1989), 155-164.
  • E. Strońska, On the group generated by quasi continuous functions, Real Analysis Exch. 17 (1991–92), 577-589.