Real Analysis Exchange

On Borel measurable functions that are VBG and (N)

Vasile Ene

Full-text: Open access

Abstract

The Banach-Zarecki Theorem states that \(VB \cap (N) = AC\) for continuous functions on a closed set. Hence it is a linear space. In this article we show that \(VB \cap (N)\) is a linear space on any real Borel set. Hence \(VBG \cap (N)\) will also be a real linear space for Borel measurable functions defined on an interval. As a consequence of this result, we show that the \(AK_N\) integral of Gordon (\cite{G14}) is well defined. We also give answers to Gordon’s questions in \cite{G14}.

Article information

Source
Real Anal. Exchange, Volume 22, Number 2 (1996), 688-695.

Dates
First available in Project Euclid: 22 May 2012

Permanent link to this document
https://projecteuclid.org/euclid.rae/1337713150

Mathematical Reviews number (MathSciNet)
MR1460981

Zentralblatt MATH identifier
0942.26019

Subjects
Primary: 26A24: Differentiation (functions of one variable): general theory, generalized derivatives, mean-value theorems [See also 28A15] 26A39: Denjoy and Perron integrals, other special integrals

Keywords
\((N)\) \(VB\) \(VBG\) \(AC\) \(ACG\) \([{\mathcal C}G]\) Borel sets \({\mathcal C}_{ap}\)

Citation

Ene, Vasile. On Borel measurable functions that are VBG and (N). Real Anal. Exchange 22 (1996), no. 2, 688--695. https://projecteuclid.org/euclid.rae/1337713150


Export citation

References

  • A. M. Bruckner, Differentiation of real functions, Lect. Notes in Math., vol. 659, Springer-Verlag, 1978.
  • V. Ene, Real functions - current topics, Lect. Notes in Math., vol. 1603, Springer-Verlag, 1995.
  • R. Gordon, Some comments on an approximately continuous Khintchine integral, Real Analysis Exchange, 20 (1994-95), no. 2, 831–841.
  • K. Kuratowski, Topology, New York - London - Warszawa, 1966.
  • C. M. Lee, On Baire one Darboux functions with Lusin's condition (N), Real Analysis Exchange, 7 (1981), 61–64.
  • I. P. Natanson, Theory of functions of a real variable, 2nd. rev. ed., (I) Ungar, New York, 1961.
  • S. Saks, Theory of the integral, 2nd. rev. ed., vol. PWN, Monografie Matematyczne, Warsaw, 1937.
  • D. N. Sarkhel, A wide Perron integral, Bull. Austral. Math. Soc., 34 (1986), 233–251.
  • D. N. Sarkhel, A wide constructive integral, Math. Japonica, 32 (1987), 295–309.
  • D. N. Sarkhel and A. K. De, The proximally continuous integrals, J. Austral. Math. Soc. (Series A), 31 (1981), 26–45.
  • D. N. Sarkhel and B. Kar, (PVB) functions and integration, J. Austral. Math. Soc., (Series A) 36 (1984), 335–353.