Real Analysis Exchange

Descriptive Character of Sets of Density and I-Density Points

Marek Balcerzak and Marek Balcerzak

Full-text: Open access

Article information

Source
Real Anal. Exchange, Volume 23, Number 1 (1997), 131.

Dates
First available in Project Euclid: 15 May 2012

Permanent link to this document
https://projecteuclid.org/euclid.rae/1337086080

Mathematical Reviews number (MathSciNet)
MR1609767

Zentralblatt MATH identifier
0938.03070

Subjects
Primary: 04A15 28A05: Classes of sets (Borel fields, $\sigma$-rings, etc.), measurable sets, Suslin sets, analytic sets [See also 03E15, 26A21, 54H05] 54H05: Descriptive set theory (topological aspects of Borel, analytic, projective, etc. sets) [See also 03E15, 26A21, 28A05]

Keywords
Borel set analytic set density point \(I\)-density point section properties

Citation

Balcerzak, Marek; Balcerzak, Marek. Descriptive Character of Sets of Density and I-Density Points. Real Anal. Exchange 23 (1997), no. 1, 131. https://projecteuclid.org/euclid.rae/1337086080


Export citation

References

  • R. Carrese, W. Wilczyński, ${\cal I}$-density points of plane sets, Ricerche di Matematica, 34 (1985), 147–157.
  • K. Ciesielski, L. Larson, K. Ostaszewski, ${\cal I}$-density continuous functions, Memoirs Amer. Math. Soc., 107, 515 (1994).
  • M. Gavalec, Iterated products of ideals of Borel sets, Colloq. Math., 50 (1985), 39–52.
  • R. A. Johnson, E. Łazarow, W. Wilczyński, Topologies related to sets having the Baire property, Demonstratio Math. 22 (1989), 179–191.
  • A. S. Kechris, Classical Descriptive Set Theory, Springer, New York 1995.
  • K. Kuratowski, Topology, vol.1, Academic Press, New York 1966.
  • E. Łazarow, On the Baire class of ${\cal I}$-approximate derivatives, Proc. Amer. Math. Soc. 100 (1987), 669–674.
  • R. D. Mauldin, One-to-one selections-marriage theorems, Amer. J. Math. 104 (1982), 823–828.
  • Y. N. Moschovakis, Descriptive Set Theory, North Holland, Amsterdam 1980.
  • J. C. Oxtoby, Measure and Category, Springer, New York 1971.
  • S. Saks, Theory of the Integral, G. E. Stechert, New York 1937.
  • W. Wilczyński, A category analogue of the density topology, approximate continuity and the approximate derivative, Real Anal. Exchange 10 (1984–85), 241–265.