Real Analysis Exchange

Variation-Diminishing Wavelets and Wavelet Transforms

R. S. Pathak

Full-text: Open access

Abstract

Using Schoenberg's theory of variation-diminishing integral operators of convolution type variation diminishing wavelets and wavelets of specific changes in sign are constructed. An inversion formula involving derivatives of the wavelet transform is established. Wavelets generated by Tanno's form of convolution kernels and \(H\)-functions are also investigated. Results are illustrated by means of examples and figures.

Article information

Source
Real Anal. Exchange, Volume 37, Number 1 (2011), 147-166.

Dates
First available in Project Euclid: 30 April 2012

Permanent link to this document
https://projecteuclid.org/euclid.rae/1335806768

Mathematical Reviews number (MathSciNet)
MR3016856

Zentralblatt MATH identifier
1247.42045

Subjects
Primary: 42C40: Wavelets and other special systems
Secondary: 44A35: Convolution

Keywords
variation diminishing transforms wavelets wavelet transform inversion of the wavelet transform wavelets generated by \(H\)-function

Citation

Pathak, R. S. Variation-Diminishing Wavelets and Wavelet Transforms. Real Anal. Exchange 37 (2011), no. 1, 147--166. https://projecteuclid.org/euclid.rae/1335806768


Export citation

References

  • C. K. Chui, An Introduction to Wavelets, Acad. Press, New York, 1992.
  • Z. Ditzian, Inversion of a class of convolution transforms of generalized functions, Canad. Math. Bull., 13(2) (1970) 181–186.
  • Z. Ditzian and A. Jakimovski, A remark on a class of convolution transforms, Tohoku Math. J., 20 (1968) 170–174.
  • Z. Ditzian and A. Jakimovski, Properties of kernels for a class of convolution transforms, Tohoku Math. J., 20 (1968) 175–198.
  • I. I. Hirschman Jr. and D. V. Widder, The Convolution Transform, Princeton University Press, 1965.
  • M. Holschneider, Wavelets: An Analysis Tool, Clarendon Press, Oxford, 1995.
  • K. Kaiser, A Friendly Guide to Wavelets, Birkhäuser, 1994.
  • A. A. Kilbas and M. Saigo, ${H}$-Transforms : Theory and Applications, Chapman & Hall/CRC, Boca Raton, Florida, 2004.
  • J. N. Pandey and A. H. Zemanian, Complex inversion for the generalized convolution transformation, Pacific J. Math., 25(1) (1968) 147–157.
  • R. S. Pathak, The Wavelet Transform, Atlantis Press/World Scientific, 2009.
  • I. J. Schoenberg, On variation-diminishing integral operators of the convolution type, Proc. Natl. Acad. Sci. USA, 34 (1948) 164–169.
  • Y. Tanno, On a class of convolution transforms, Tohoku Math. J., 18 (1966) 156–173.
  • Y. Tanno, On a class of convolution transforms II, Tohoku Math. J., 19 (1967) 168–186.
  • A. H. Zemanian, Generalized Integral Transformations, Interscience, New York, 1968.