Real Analysis Exchange

Ultimately Increasing Functions

Gerald Beer and Jesús Rodríguez-López

Full-text: Open access

Abstract

A function $g$ between directed sets $\langle \Sigma, \succeq' \rangle$ and $\langle \Lambda, \succeq \rangle$ is called \emph{ultimately increasing} if for each $\sigma_1 \in \Sigma$ there exists $\sigma_2 \succeq' \sigma_1$ such that $\sigma \succeq' \sigma_2 \Rightarrow g(\sigma)\succeq g(\sigma_1)$. A subnet of a net $a$ defined on $\langle \Lambda, \succeq \rangle$ \cite {Ke} is nothing but a composition of the form $a \circ g$ where $g$ is ultimately increasing and $g(\Sigma)$ is a cofinal subset of $\Lambda$. While even for linearly ordered sets, an increasing net defined on a cofinal subset of the domain need not have an increasing extension, in complete generality, it must have an ultimately increasing extension, and conversely when the domain is linearly ordered. Applications are given in the context of functions with values in a linearly ordered set equipped with the order topology - in particular, the extended real numbers. For example, we show that a real sequence $\langle a_n \rangle$ converges to the supremum of its set of terms if and only if $\langle a_n \rangle$ is the supremum of the ultimately increasing sequences that it majorizes.

Article information

Source
Real Anal. Exchange, Volume 36, Number 1 (2010), 195-212.

Dates
First available in Project Euclid: 14 March 2011

Permanent link to this document
https://projecteuclid.org/euclid.rae/1300108093

Mathematical Reviews number (MathSciNet)
MR3016412

Zentralblatt MATH identifier
1248.26016

Subjects
Primary: 26A06: One-variable calculus 26A48: Monotonic functions, generalizations 54A20: Convergence in general topology (sequences, filters, limits, convergence spaces, etc.)
Secondary: 06A05: Total order 06A06: Partial order, general

Keywords
ultimately increasing function monotone convergence theorem increasing function subnet directed set chain order topology

Citation

Beer, Gerald; Rodríguez-López, Jesús. Ultimately Increasing Functions. Real Anal. Exchange 36 (2010), no. 1, 195--212. https://projecteuclid.org/euclid.rae/1300108093


Export citation

References

  • R. Beattie and H.-P. Butzmann, Convergence structures and applications to functional analysis, Kluwer Academic Publishers, Dordrecht, 2002.
  • G. Choquet, Convergences, Ann. Univ. Grenoble 23 (1947-48), 57-112.
  • C. Costantini, S. Levi J. Pelant, Infima of hyperspace topologies, Mathematika 42 (1995), 67-86.
  • S. Dolecki, An initiation into convergence theory, in Beyond Topology (F. Mynard and E. Pearl eds.), Contemporary Mathematics no. 486, American Mathematical Society, Providence, RI, 2009.
  • R. Engelking, General topology, Polish Scientific Publishers, Warsaw, 1977.
  • G. Gierz, K. Hofmann, K. Keimel, J. Lawson, M. Mislove and D. Scott, A compendium of continuous lattices, Springer-Verlag, Berlin, 1980.
  • G. Grätzer, General lattice theory, Birkhäuser-Verlag, Basel, 1998.
  • S.-T. Hu, Introduction to general topology, Holden-Day, San Francisco, CA,1966.
  • J. Kelley, General Topology, Van-Nostrand, Princeton, NJ, 1955.
  • J. Munkres, Topology, Prentice-Hall, Upper Saddle River, New Jersey, 2000.
  • H. Royden, Real analysis, Prentice Hall, Englewood Cliffs, New Jersey, 1988.
  • L. Steen and J. Seebach, Counterexamples in Topology, Springer-Verlag, New York, NY, 1978.
  • S. Willard, General Topology, Addison-Wesley, Reading, Mass., 1970.