Real Analysis Exchange

Submultiplicativity of Norms for Spaces of Generalized BV-functions

Robert Kantrowitz

Full-text: Open access

Abstract

The purpose of this article is to offer a couple of short arguments for results describing the interaction between the norm and pointwise products in certain spaces of functions of generalized bounded variation.

Article information

Source
Real Anal. Exchange, Volume 36, Number 1 (2010), 169-176.

Dates
First available in Project Euclid: 14 March 2011

Permanent link to this document
https://projecteuclid.org/euclid.rae/1300108091

Mathematical Reviews number (MathSciNet)
MR3016410

Zentralblatt MATH identifier
1251.26008

Subjects
Primary: 26A45: Functions of bounded variation, generalizations
Secondary: 46J10: Banach algebras of continuous functions, function algebras [See also 46E25]

Keywords
bounded variation Banach algebra

Citation

Kantrowitz, Robert. Submultiplicativity of Norms for Spaces of Generalized BV-functions. Real Anal. Exchange 36 (2010), no. 1, 169--176. https://projecteuclid.org/euclid.rae/1300108091


Export citation

References

  • M. Avdispahić, Concepts of generalized bounded variation and the theory of Fourier series, Internat. J. Math. & Math. Sci. 9 (1986) 223–244.
  • P. S. Bullen, An inequality for variations, Amer. Math. Monthly 90 (1983) p. 560.
  • G. L. Krabbe, Integration with respect to operator-valued functions, Acta Sci. Math. 22 (1961) 301–319.
  • K. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, Oxford University Press, Oxford, 2000.
  • L. Maligranda and W. Orlicz, On some properties of functions of generalized variation, Mh. Math. 104 (1987) 53–65.
  • J. Musielak and W. Orlicz, On generalized variations I, Studia Math. 18 (1959) 11–41.
  • P. B. Pierce and D. J. Velleman, Some generalizations of the notion of bounded variation, Amer. Math. Monthly 113 (2006) 897–904.
  • A. M. Russell, A commutative Banach algebra of functions of bounded variation, Amer. Math. Monthly 87 (1980) 39–40.
  • A. M. Russell, A commutative Banach algebra of functions of generalized variation, Pac. J. Math. 84 (1979) 455–463.
  • M. Schramm, Functions of $\Phi$-bounded variation and Riemann-Stieltjes integration, Trans. Amer. Math. Soc. 287 (1985) 49–63.
  • R. G. Vyas, On the absolute convergence of small gaps Fourier series of functions of $\Lambda BV^{(p)}$, J. Inequal. Pure Appl. Math. 6 (1), 23 (2005) 1–6.
  • D. Waterman, On $\Lambda$-bounded variation, Studia Math. 57 (1976) 33–45.
  • N. Wiener, The quadratic variation of a function and its Fourier coefficients, J. Math. and Phys. 3 (1924) 72–94.
  • L. C. Young, Sur une généralisation de la notion de variation de puissance p-ième bornée au sense de M. Wiener, et sur la convergence des séries de Fourier, Comptes. Rend. Acad. Sci. Paris 204 (1937) 470–472.