Real Analysis Exchange

Density of Periodic Orbits in ω-Limit Sets with the Hausdorff Metric

Alexander Blokh

Full-text: Open access

Abstract

We prove that if $f$ is a continuous interval map such that all wandering intervals converge to periodic orbits, then the family of periodic orbits is dense in $\omega$-limit sets with Hausdorff metric.

Article information

Source
Real Anal. Exchange, Volume 24, Number 2 (1999), 503-522.

Dates
First available in Project Euclid: 28 September 2010

Permanent link to this document
https://projecteuclid.org/euclid.rae/1285689132

Mathematical Reviews number (MathSciNet)
MR1704731

Zentralblatt MATH identifier
0962.54031

Subjects
Primary: 54H20: Topological dynamics [See also 28Dxx, 37Bxx]

Keywords
Interval maps ω-limit sets periodic points Hausdorff metric

Citation

Blokh, Alexander. Density of Periodic Orbits in ω-Limit Sets with the Hausdorff Metric. Real Anal. Exchange 24 (1999), no. 2, 503--522. https://projecteuclid.org/euclid.rae/1285689132


Export citation

References

  • A. Blokh, The Spectral Decomposition for One-Dimensional Maps, Dynamics Reported, 4 (1995), 1–59.
  • A. Blokh. A. Bruckner, P. Humke. J. Smital, On the metric space of $\omega$-limit sets of continuous maps of the interval, Trans. Amer. Math. Soc., 348 (1996), 1357–1372.
  • A. Blokh, M. Lyubich, Non-existence of Wandering Intervals and Structure of Topological Attractors of One-Dimensional Dynamical Systems.2 The Smooth Case, Erg. Th. and Dyn. Syst., 9 (1989) 751–758.
  • A. Bruckner, J. Ceder, Chaos in terms of the map $x\to \omega(x,f)$, Pac. J. of Math., 156, No. 1 (1992), 63–96.
  • A. Bruckner, J. Smital, The structure of $\omega$-limit sets for continuous maps of the interval, Mathematica Bohemica, 117 (1992), 42–47.
  • M. Lyubich, Non-existence of Wandering Intervals and Structure of Topological Attractors of One-Dimensional Dynamical Systems. 1 The Case of Negative Schwarzian, Erg. Th. and Dyn. Syst. 9 (1989), 737–749.
  • M. Martens, W. de Melo, S. van Strien, Julia-Fatou-Sullivan Theory for Real One-Dimensional Dynamics, Acta Math., 168 (1992), 273–318.
  • Z. Nitecki, Periodic and limit orbits and the depth of the center for piecewise monotone interval maps, Proc. Amer. Math. Soc., 80 (1980), 511–514.
  • A. N. Sharkovsky, Non-wandering points and the center a continuous map of the line into itself, Dop. Acad. Nauk Ukr. RSR Ser. A (1964), 865–868.
  • A. N. Sharkovsky, Continuous maps on the set of limit points of an iterated sequence, Ukr. Math. J., 18, No. 5 (1966), 127–130.