Real Analysis Exchange

The Approximate Variational Integral

D. K. Ganguly and Ranu Mukherjee

Full-text: Open access

Abstract

The concept of the GAP-integral was introduced by the authors [7]. In this paper we characterize the Variational integral by the GAP-integral and present some significant convergence theorems for the GAP-integral.

Article information

Source
Real Anal. Exchange, Volume 33, Number 2 (2007), 457-466.

Dates
First available in Project Euclid: 18 December 2008

Permanent link to this document
https://projecteuclid.org/euclid.rae/1229619423

Mathematical Reviews number (MathSciNet)
MR2458262

Zentralblatt MATH identifier
1159.26002

Subjects
Primary: 26A39: Denjoy and Perron integrals, other special integrals

Keywords
approximate full cover variational integral approximate variational integral density point $\Delta$-division GAP-integral Saks-Henstock lemma

Citation

Ganguly, D. K.; Mukherjee, Ranu. The Approximate Variational Integral. Real Anal. Exchange 33 (2007), no. 2, 457--466. https://projecteuclid.org/euclid.rae/1229619423


Export citation

References

  • J. C. Burkill, The approximately continuous Perron integral, Math. Zeit., 34 (1931), 270-278.
  • P. S. Bullen, The Burkill approximately continuous integral, J. Australian, Math. Soc. Ser. A., 35 (1983), 236-253.
  • R. A. Gordon, {\em The Integrals of
  • R. Henstock, Linear Analysis, Butterworths, London, (1983).
  • Y. Kubota, An elementary theory of the special Denjoy integral, Math. Japonica 24 $(1980)$, 507-520.
  • D. K. Ganguly, Ranu Mukherjee, On convergence of the GAP-integral, Real Anal. Exch., 31(2) (2005/2006), 373-384.
  • D. K. Ganguly, Ranu Mukherjee, The generalized approximate Perron integral, Math. Slovaca, 58(1) (2008), 31-42.
  • S. Schwabik, Generalized Ordinary Differential Equations, World Scientific, Singapore, (1992).