Real Analysis Exchange

Differentiability of Monotone Sobolev Functions

Jani Onninen

Full-text: Open access

Abstract

We establish a sharp integrability condition on the partial derivatives of a weakly monotone Sobolev function to guarantee differentiability almost everywhere.

Article information

Source
Real Anal. Exchange, Volume 26, Number 2 (2000), 761-772.

Dates
First available in Project Euclid: 27 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.rae/1214571366

Mathematical Reviews number (MathSciNet)
MR1844392

Zentralblatt MATH identifier
1055.46021

Subjects
Primary: 26B35: Special properties of functions of several variables, Hölder conditions, etc. 46E35: Sobolev spaces and other spaces of "smooth" functions, embedding theorems, trace theorems

Keywords
Differentiability weakly monotonicity Lorentz spaces

Citation

Onninen, Jani. Differentiability of Monotone Sobolev Functions. Real Anal. Exchange 26 (2000), no. 2, 761--772. https://projecteuclid.org/euclid.rae/1214571366


Export citation

References

  • A. P Calderón, On the differentiability of absolutely continuous functions, Riv. Mat. Univ. Parma., 2 (1951), 203–213.
  • L. Cesari, Sulle funzioni assolutament continue in due variability, Ann. Scuola Norm. Sup. Pisa., 10 (1941), 91–101.
  • A. Cianchi and L. Pick, Sobolev embeddings into BMO, VMO, and $L_\infty$, Ark. Mat., 36 (1998), 317–340.
  • R. A. DeVore and R. C. Sharpley, Maximal functions measuring smoothness, Mem. Amer. Math. Soc., 47 (1984), no. 293.
  • F. W. Gehring and O. Lehto, On the total differentiability of functions of a complex variable, Ann. Acad. Sci. Fenn. Ser. A I Math., 272 (1959), 1–9.
  • P. Hajłasz, and J. Malý, Approximation of nonlinear expressions involving gradient in Sobolev spaces, Preprint.
  • G. H. Hardy, J. H. Littlewood and G. Pólya, Inequalities, Cambridge University Press, (1934).
  • T. Iwaniec, P. Koskela J. and Onninen, Mappings of finite distortion: Monotonicity and continuity, Inventiones Mathematicae, to appear.
  • J. Kauhanen, P. Koskela and J. Malý, (1999) On functions with derivatives in a Lorentz space, Manuscripta Math., 100, no. 1 (1999), 87–101.
  • V. I. Kolyada, Estimates for rearrangements and embedding theorems, Math. USSR-Sb., 64, no. 1 (1988), 1–21.
  • P. Koskela, J. J. Manfredi and E. Villamor, Regularity theory and traces of ${\mathcal A}$-harmonic functions, Trans. Amer. Math. Soc., 348, no. 2 (1996), 755–766.
  • H. Lebesgue, Sur le problème de Dirichlet, Rend. Circ. Palermo, 27 (1907), 371–402.
  • G. G. Lorentz, Some new functional spaces, Ann. of Math., 51 (1950), 37–55.
  • J. Malý, A simple proof of the Stepanov theorem on differentiability almost everywhere, Exposition. Math., 17 (1999), 59–61.
  • J. Manfredi, Weakly Monotone Functions, The Journal of Geometric Analysis, 3 (1994), 393–402.
  • E. M. Stein, Editor's note: The differentiability of functions in $\rn $, Annals of Mathematics, 113 (1981), 383–385.
  • E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, (1971).
  • V. Stepanoff, Sur les conditions de l'existence de la diffeérentielle totale, Mat. Sb., 32 (1925), 511–526.
  • J. Väisälä, Two new characterizations for quasiconformality, Ann. Acad. Sci. Fenn. Ser. A I Math., 362 (1965), 1–12.
  • W. P. Ziemer, Weakly Differentiable Functions, Graduate Texts in Mathematics, 120, Springer-Verlag, (1989).