Real Analysis Exchange

On Henstockʼs Inner Variation and Strong Derivatives

Chew Tuan Seng

Full-text: Open access

Abstract

The Lebesgue and Bochner integrals are characterized by strong derivatives, inner variation and Lusin condition in this note.

Article information

Source
Real Anal. Exchange, Volume 27, Number 2 (2001), 725-734.

Dates
First available in Project Euclid: 2 June 2008

Permanent link to this document
https://projecteuclid.org/euclid.rae/1212412868

Mathematical Reviews number (MathSciNet)
MR1923161

Zentralblatt MATH identifier
1069.26008

Subjects
Primary: 26A24: Differentiation (functions of one variable): general theory, generalized derivatives, mean-value theorems [See also 28A15] 26A39: Denjoy and Perron integrals, other special integrals

Keywords
Inner variation strong derivative Lebesgue integral McShane integral

Citation

Seng, Chew Tuan. On Henstockʼs Inner Variation and Strong Derivatives. Real Anal. Exchange 27 (2001), no. 2, 725--734. https://projecteuclid.org/euclid.rae/1212412868


Export citation

References

  • C. L. Belna, M. J. Evans and P. D. Humke, Symmetric and Strong Differentiation, Amer. Math. Monthly, 86 (1979), 121–123.
  • E. Cabral and Lee Peng Yee, A Fundamental Theorem of Calculus for the Kurzweil-Henstock Integrals in $\mathbb R^m$, Real Anal. Exchange, 26(2) (2000–2001), 867–876.
  • J. Diestel and J. J. Uhl Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.
  • M. Esser and O. Shisha, A Modified Differentiation, Amer. Math. Monthly, 71 (1964), 904–906.
  • Jean-Christophe Feauveau, A Generalized Riemann Integral for Banach-Valued Functions, Real Anal. Exchange, 25(2) (1999–2000), 919–930.
  • R. Henstock, The General Theory of Integration, Oxford University Press, Oxford, 1991.
  • Lu Jitan and Lee Peng Yee, The Primitive of Henstock Integrals Functions in Euclidean Space, Bull. London Math. Society, 31 (1999), 173–180.
  • Ma Zhengmin, Lee Peng Yee and Chew Tuan Seng, Absolute Integration Using Vitali Covers, Real Anal. Exchange, 18(2) (1992–93), 405–419.
  • J. Mikusinski, The Bockner Integral, Birkhauser, 1978.
  • Nakanishi Shizu, {The Henstock Integral for Functions with Values in Nuclear Spaces and the Henstock
  • A. P. Solodov, On Conditions of Differentiability Almost Everywhere for Absolutely Continuous Banach-Valued Function, Moscow Univ. Math. Bull., 54 (1999), 29–32.
  • B. S. Thomson, {Derivation Bases and the Real
  • Toh T. L. and Chew T. S., A Variational Approach to It's Integral, Proceedings of Symposium on Analysis and Probability 1998, Taiwan, 291–299, World Scientific Press, Singapore, 1999.
  • Wu Congxin and Yao Xiaobo, A Riemann-Type Definition of the Bochner Integral, J. Math. Study, 27 (1994), 32–36.
  • Xu J. G. and Lee P. Y., Stochastic Integrals of It$\bar o$ and Henstock, Real Anal. Exchange, 18(2) (1992–93), 352–366.
  • Yang Keren and Lu Shipan, Strong Derivative and its Consequences, J. Math. Study, 27 (1994), 191–193.