Real Analysis Exchange

The Primitive of a Kurzweil-Henstock Integrable Function in Multidimensional Space

Emmanuel Cabral and Lee Peng-Yee

Full-text: Open access


In this paper, give a new, full characterization of the primitive of a Kurzweil-Henstock integrable function in multidimensional space.

Article information

Real Anal. Exchange, Volume 27, Number 2 (2001), 627-634.

First available in Project Euclid: 2 June 2008

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 26A39: Denjoy and Perron integrals, other special integrals

Kurzweil-Henstock integrable function primitive full characterization


Cabral, Emmanuel; Peng-Yee, Lee. The Primitive of a Kurzweil-Henstock Integrable Function in Multidimensional Space. Real Anal. Exchange 27 (2001), no. 2, 627--634.

Export citation


  • Cabral, E.A. and Lee, P.Y., A Fundamental Theorem of Calculus for the Kurzweil-Henstock Integral in $ \mathbb{R}^{m}$, Real Analysis Exchange, 26(2001-2002), 867-876.
  • de Guzman, M. Differentiation of Integrals in $\mathbb{R}^{n}$, Springer-Verlag, Berlin, 1976.
  • Folland, G.B., Real Analysis: Modern Techniques and Applications, Second Edition, John Wiley and Sons Inc., U.S.A., 1999.
  • Gordon, R.A., The Integrals of Lebesgue, Denjoy, Perron and Henstock, Graduate Studies in Mathematics, Volume 4, American Mathematical Society, 1994.
  • Lee, P.Y., Lanzhou Lectures on Henstock Integration, World Scientific Publishing Co., Singapore, 1989.
  • Lu, J. T. and Lee, P.Y., The Primitives of Henstock Integrable Functions in Euclidean Space, Bull.