Real Analysis Exchange

Small opaque sets.

Ondřej Zindulka

Full-text: Open access

Abstract

A set in a separable metric space is called \emph{Borel--opaque} if it meets every Borel set of positive topological dimension. We show that if there is a set of reals with cardinality of the continuum and universal measure zero, then each separable space contains a Borel--opaque set that is of universal measure zero. Similar results hold for opaque sets that are perfectly meager, \la sets, \lap sets etc., and can be extended to some nonseparable spaces. On the other hand, we show that a \s set is zero--dimensional. Using opacity we also construct universal measure zero sets of positive Hausdorff dimension.

Article information

Source
Real Anal. Exchange, Volume 28, Number 2 (2002), 455-470.

Dates
First available in Project Euclid: 20 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.rae/1184963808

Mathematical Reviews number (MathSciNet)
MR2009767

Zentralblatt MATH identifier
1044.28011

Subjects
Primary: 28C15: Set functions and measures on topological spaces (regularity of measures, etc.) 54F45: Dimension theory [See also 55M10] 28A78: Hausdorff and packing measures

Keywords
opaque set universal measure zero topological dimension zero--dimensional perfectly meager universally meager \la set \lap set \s set

Citation

Zindulka, Ondřej. Small opaque sets. Real Anal. Exchange 28 (2002), no. 2, 455--470. https://projecteuclid.org/euclid.rae/1184963808


Export citation

References

  • T. Bartoszynski, On perfectly meager sets, Proc. Amer. Math., Soc. 130 (2002), no. 4, 1189–1195.
  • J. B. Brown and C. V. Cox, Classical theory of totally imperfect sets, Real Anal. Exchange, 7 (1982), no. 2, 185–232.
  • R. Engelking, General topology, Heldermann Verlag, Berlin, 1989.
  • K. J. Falconer, The geometry of fractal sets, Cambridge University Press, Cambridge, London, New York, 1985.
  • E. Grzegorek, Solution to a problem of Banach on $\sigma$-fields without continuous measures, Acad. Pol. Sci., 28 (1980), 7–10.
  • ––––, Always of the first category sets, Rend. Circ Mat. Palermo, II Ser. Suppl., no. 6, (1984), 139–147.
  • ––––, Always of the first category sets II, Rend. Circ Mat. Palermo, II Ser. Suppl., no. 10, (1985), 43–48.
  • A. Hilgers, Bemerkung zur dimensionstheorie, Fund. Math., 28 (1937), 303–304.
  • W. Hurewicz, Une remarque sur l'hypothese du continu, Fund. Math., 19 (1932), 8–9.
  • W. Hurewicz and H. Wallman, Dimension theory, Princeton, 1941.
  • K. Kuratowski, Topologie, vol. I, Państwowe Wydawnictwo Naukowe, Warsaw, 1958.
  • S. Mazurkiewicz and E. Szpilrajn, Sur la dimension de certains ensembles singuliers, Fund. Math., 28 (1937), 305–308.
  • A. W. Miller, Special subsets of the real line, Handbook of Set–Theoretic Topology (K. Kunen and J. E. Vaughan, eds.), North–Holland, Amsterdam, New York, Oxford, 1984.
  • ––––, Special subsets of reals, Set Theory of the Reals (Israel Mathematical Conference Proceedings Haim Judah, ed.), American Mathematical Society, 1993, 415–432.
  • I. Recław, Products of perfectly meager sets, Proc. Amer. Math. Soc. 112 (1991), 1029–1031.
  • C. A. Rogers, Hausdorff measures, Cambridge University Press, Cambridge, 1970.
  • F. Rothberger, Sur un ensemble toujours de première categorie qui est dépourvu de la propriété $\lambda$, Fund. Math., 32 (1939), 294–300.
  • W. Sierpiński, Sur une propriété additive d'ensembles, Computes Rendus Soc. Sci. Varsovie, 30 (1937), 257–259.
  • ––––, Sur la non–invariance topologique de la propriété $\lambda'$, Fund. Math., 33 (1945), 264.
  • P. Zakrzewski, Universally meager sets, Proc. Amer. Math. Soc., 129 (2001), 1793–1798.
  • ––––, On a construction of universally small sets, Real Analysis Exchange, 28 (2002-2003), 221–226
  • O. Zindulka, Dimension zero vs. measure zero, Proc. Amer. Math. Soc., 128 (2000), 1769–1778.