Real Analysis Exchange

The relative growth of information in two-dimensional partitions.

Karma Dajani, Aimee S. A. Johnson, and Martijn de Vries

Full-text: Open access

Abstract

Let $\overline{x} \in [0,1)^2$. In this paper we find the rate at which knowledge about the partition elements $\overline{x}$ lies in for one sequence of partitions determines the partition elements it lies in for another sequence of partitions. This rate depends on the entropy of these partitions and the geometry of their shapes, and gives a two-dimensional version of Lochs' theorem.

Article information

Source
Real Anal. Exchange Volume 31, Number 2 (2005), 397-408.

Dates
First available in Project Euclid: 10 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.rae/1184104033

Mathematical Reviews number (MathSciNet)
MR2265782

Zentralblatt MATH identifier
1107.28011

Subjects
Primary: 28D15: General groups of measure-preserving transformations
Secondary: 28D20: Entropy and other invariants

Keywords
Lochs' theorem Shannon-McMillan-Breiman Theorem

Citation

Dajani, Karma; de Vries, Martijn; Johnson, Aimee S. A. The relative growth of information in two-dimensional partitions. Real Anal. Exchange 31 (2005), no. 2, 397--408.https://projecteuclid.org/euclid.rae/1184104033


Export citation

References

  • P. Billingsley, Ergodic Theory and Information, John Wiley and Sons, Inc., New York (1965)
  • W. Bosma, K. Dajani, C. Kraaikamp, Entropy and Counting Correct Digits, University of Nijmegen, report no. 9925, 1999, http://www.math.kun.nl/onderzoek/reports/reports1999.html
  • K. Dajani, A. Fieldsteel, Equipartition of Interval Partitions and an Application to Number Theory, Proc. Amer. Math. Soc., 129, 12, (2001), 3453–3460.
  • E. Lindenstrauss, Pointwise Theorems for Amenable Groups, Inventiones Mathematicae, 146 (2001), 259–295.
  • G. Lochs, Vergleich der Genauigkeit von Dezimalbruch und Kettenbruch, Abh. Math. Sem. Hamburg, 27 (1964), 142–144.