Real Analysis Exchange

An equivalence theorem for integral conditions related to Hardy's inequality.

Amiram Gogatishvili, Alois Kufner, Lars-Erik Persson, and Anna Wedestig

Full-text: Open access

Abstract

Let $1<p\leq q<\infty .$ Inspired by some recent results concerning Hardy type inequalities we state and prove directly the equivalence of four scales of integral conditions. By applying our result to the original Hardy type inequality situation we obtain a new proof of a number of characterizations of the Hardy inequality and obtain also some new weight characterizations. As another application we prove some new weight characterizations for embeddings between some Lorentz spaces.

Article information

Source
Real Anal. Exchange, Volume 29, Number 2 (2003), 867-880.

Dates
First available in Project Euclid: 7 June 2006

Permanent link to this document
https://projecteuclid.org/euclid.rae/1149698549

Mathematical Reviews number (MathSciNet)
MR2083821

Zentralblatt MATH identifier
1070.26015

Subjects
Primary: 26D10: Inequalities involving derivatives and differential and integral operators 26D15: Inequalities for sums, series and integrals
Secondary: 47B07: Operators defined by compactness properties 47B38: Operators on function spaces (general)

Keywords
Inequalities Hardy's inequality Weights Scales of weight characterizations Hardy operator Continuity equivalent integral conditions comparisons

Citation

Gogatishvili, Amiram; Kufner, Alois; Persson, Lars-Erik; Wedestig, Anna. An equivalence theorem for integral conditions related to Hardy's inequality. Real Anal. Exchange 29 (2003), no. 2, 867--880. https://projecteuclid.org/euclid.rae/1149698549


Export citation

References

  • G. Bennett, Some elementary inequalities, Quart. J. Math. Oxford Ser. (2), 38 (1987), No. 152, 401–425.
  • A. Kufner and L. E. Persson, Weighted Inequalities of Hardy Type, World Scientific Publishing Co, Singapore, New Jersey, London, Hong Kong, 2003.
  • A. Kufner, L. E. Persson and A. Wedestig, A study of some constants characterizing the weighted Hardy inequality, Proceedings of the The Wadyslaw Orlicz Centenary Conference and Function Spaces VII, to appear.
  • B. Opic and P. Gurka, Weighted inequalities for geometric means, Proc. Amer. Math. Soc., 3 (1994), 771–779.
  • B. Opic and A. Kufner, Hardy-Type Inequalities, Pitman Research Notes in Mathematics Series, Vol 211, Longman Scientific and Technical Harlow, 1990.
  • L. E. Persson and V. D. Stepanov, Weighted integral inequalities with the geometric mean operator, J. Inequal. Appl. 7 (2002), no. 5, 727–746 (An abbreviated version can also be found in Russian Akad. Sci. Dokl. Math. 63 (2001), 201–202).
  • E. T. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math., 96 (1990), 145–158.
  • V. D. Stepanov, The weighted Hardy's inequality for nonincreasing functions, Trans. Amer. Math. Soc., 338 (1993), no. 1, 173–186.