Real Analysis Exchange

On a theorem of Volkmann.

Hans Weber and Enrico Zoli

Full-text: Open access


We generalize a theorem of Volkmann concerning the Hausdorff measures on subfields of $\R$. Our short proof is based on a mensural trichotomy law for invariant subsets of a locally compact group.

Article information

Real Anal. Exchange, Volume 31, Number 1 (2005), 1-6.

First available in Project Euclid: 5 June 2006

Permanent link to this document

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 28A12: Contents, measures, outer measures, capacities
Secondary: 28A78: Hausdorff and packing measures 43A05: Measures on groups and semigroups, etc.

Hausdorff measures Haar measures locally compact groups invariant sets


Weber, Hans; Zoli, Enrico. On a theorem of Volkmann. Real Anal. Exchange 31 (2005), no. 1, 1--6.

Export citation


  • G. Edgar, C. Miller, Borel Subrings of the Reals, Proc. Amer. Math. Soc., 131 (2003), 1121–1129.
  • J. Foran, Some Relationships of Subgroups of the Real Numbers to Hausdorff Measures, J. London Math. Soc., 7 (1974), 651–661.
  • A. Goetz, Bemerkungen über Hausdorffsche Maß e und Hausdorffsche Dimensionen in Lieschen Gruppen, Colloq. Math., 5 (1958), 55–65.
  • P. R. Halmos, Measure Theory. 2nd printing, Springer-Verlag, New-York, 1974.
  • D. Kahnert, Haar–Maß und Hausdorff–Maß, in Proc. Conf. Oberwolfach 1975, Measure Theory, Springer-Verlag, New-York, (1976), 13–23.
  • M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Państowe Wydawnyctwo Naukowe, Warsaw, 1985.
  • C. A. Rogers, Hausdorff Measures, Cambridge University Press, London, 1970.
  • B. Volkmann, Eine metrische Eigenschaft reeller Zahlkörper, Math. Ann., 141 (1960), 237–238.
  • H. Weber, E. Zoli, On the Steinhaus Property in Topological Groups, Topol. Appl. (to appear).