Real Analysis Exchange

An n-th order integral and its integration by parts with applications to trigonometric series.

S. N. Mukhopadhyay

Full-text: Open access

Abstract

An $n$-th order symmetric Perron type integral is defined and its properties are studied. An integration by parts formula is proved and applied to solve problems related to summable trigonometric series.

Article information

Source
Real Anal. Exchange, Volume 30, Number 2 (2004), 451- 494 .

Dates
First available in Project Euclid: 15 October 2005

Permanent link to this document
https://projecteuclid.org/euclid.rae/1129416475

Mathematical Reviews number (MathSciNet)
MR2177413

Zentralblatt MATH identifier
1110.26008

Subjects
Primary: 26A39: Denjoy and Perron integrals, other special integrals

Keywords
$P^n$-integral integration by parts summable trigonometric series

Citation

Mukhopadhyay, S. N. An n -th order integral and its integration by parts with applications to trigonometric series. Real Anal. Exchange 30 (2004), no. 2, 451-- 494. https://projecteuclid.org/euclid.rae/1129416475


Export citation

References

  • J. A. Bergin, A new characterization of the Cesàro-Perron integrals using Peano derivates, Trans. Amer. Math. Soc., 228 (1977), 287–305.
  • P. S. Bullen, A criterion for $n$-convexity, Pacific J. Math., 36 (1971), 81–98.
  • P. S. Bullen & S. N. Mukhopadhyay, Integration by parts formulæ for some trigonometric integrals, Proc. London Math. Soc., (3), 29 (1974), 159–173.
  • P. S. Bullen & S. N. Mukhopadhyay, Generalized continuity of higher order symmetric derivatives, South-East Asian Bull. Math., 13 (1989), 127–137.
  • J. C. Burkill, The Cesàro-Perron scale of integration, Proc.
  • P. S. Chakrabarti & S. N. Mukhopadhyay, A scale of approximate Cesàro-Perron integrals, Bull. Inst. Math. Acad. Sinica, 10 (1982), 323–346.
  • G. E. Cross, The $P^n$ integral, Canad. J. Math., 18 (1975), 493–497.
  • G. E. Cross, Additivity of the $P^n$ integral, Canad. J. Math., 30 (1978), 783–796.
  • G. E. Cross, Additivity of the $P^n$ integral (2), Canad. J. Math., 34 (1982), 506–512.
  • R. D. James, Generalized $n$-th primitives, Trans. Amer. Math. Soc., 76 (1954), 149–176.
  • R. D. James, Summable trigonometric series, Pacific J. Math., 6 (1956), 99–110.
  • C. M. Lee, On integrals and summable trigonometric series, Canad.
  • S. N. Mukhopadhyay, On the regularity of the $P^n$-integral and its application to summable trigonometric series, Pacific J. Math., 55 (1974), 233–247.
  • S. N. Mukhopadhyay, An extension of the $SCP$-integral with a relaxed integration by parts formula, Analysis Math., 25 (1999), 103–132.
  • S. N. Mukhopadhyay & S. Mitra, An extension of a theorem of Marcinkiewicz and Zygmund on differentiability, Fund. Math., 151 (1996), 21–38.
  • H. W. Oliver,The exact Peano derivatives, Trans. Amer. Math. Soc., 76 (1954), 444–456.
  • S. Saks, Theory of the Integral, Dover, 1937.
  • V. A. Skljarenko, On integration by parts in Burkill's $SCP$-integral, Math. USSR-Sb., 40 (1981), 567–582; Mat.Sb., 112 (154) (1980), 630–646, (in Russian).
  • V. A. Skvorcov, Concerning the definition of the $P^2$- and $SCP$-integrals, Vestnik Moskov. Univ. Ser. I, Mat. Mekh., 21 (1966), 12–19, (in Russian).
  • F. Wolf, Summable trigonometric series; an extension of uniqueness theorem, Proc. London Math. Soc., (2) 45 (1939), 328–356.
  • A. Zygmund, Trigonometric Series, Cambridge, 1968.