Probability Surveys

Metastable Markov chains

Claudio Landim

Full-text: Open access

Abstract

We review recent results on the metastable behavior of continuous-time Markov chains derived through the characterization of Markov chains as unique solutions of martingale problems.

Article information

Source
Probab. Surveys, Volume 16 (2019), 143-227.

Dates
Received: July 2018
First available in Project Euclid: 10 June 2019

Permanent link to this document
https://projecteuclid.org/euclid.ps/1560153809

Digital Object Identifier
doi:10.1214/18-PS310

Mathematical Reviews number (MathSciNet)
MR3960293

Zentralblatt MATH identifier
07064384

Subjects
Primary: 60J27: Continuous-time Markov processes on discrete state spaces 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 60J60: Diffusion processes [See also 58J65] 60J45: Probabilistic potential theory [See also 31Cxx, 31D05] 82C22: Interacting particle systems [See also 60K35] 82C26: Dynamic and nonequilibrium phase transitions (general)

Keywords
Markov chains model reduction potential theory Dirichlet and Thomson principles

Rights
Creative Commons Attribution 4.0 International License.

Citation

Landim, Claudio. Metastable Markov chains. Probab. Surveys 16 (2019), 143--227. doi:10.1214/18-PS310. https://projecteuclid.org/euclid.ps/1560153809


Export citation

References

  • [1] D. J. Aldous, M. Brown: Inequalities for rare events in time-reversible Markov chains. I. Stochastic inequalities (Seattle, WA, 1991), 1–16, IMS Lecture Notes Monogr. Ser. 22, Inst. Math. Statist., Hayward, CA, 1992.
  • [2] D. Aldous, J. A. Fill: Reversible Markov chains and random walks on graphs. Available at http://www.stat.berkeley.edu/~aldous/RWG/book.html, (2001).
  • [3] I. Armendáriz, S. Grosskinsky, M. Loulakis: Zero-range condensation at criticality. Stoch. Proc. Appl. 123, 3466–3496 (2013).
  • [4] I. Armendáriz, S. Grosskinsky, M. Loulakis: Metastability in a condensing zero-range process in the thermodynamic limit. Probab. Theory Related Fields 169, 105–175 (2017).
  • [5] I. Armendáriz, M. Loulakis: Thermodynamic limit for the invariant measures in supercritical zero range processes. Probab. Theory Related Fields 145, 175–188 (2009).
  • [6] I. Armendáriz, M. Loulakis: Conditional distribution of heavy tailed random variables on large deviations of their sum. Stoch. Proc. Appl. 121, 1138–1147 (2011).
  • [7] S. Arrhenius: On the reaction velocity of the inversion of cane sugar by acids. J. Phys. Chem. 4, 226 (1889). Partially translated to english in “Selected readings in chemical kinetics”, edited by M. Back and K. Laidler, Pergamon press, Oxford 1967.
  • [8] L. Avena, F. Castell, A. Gaudillière, C. Melot: Approximate and exact solutions of intertwining equations through random spanning forests. arXiv:1702.05992 (2017).
  • [9] L. Avena, F. Castell, A. Gaudillière, C. Melot: Intertwining wavelets or Multiresolution analysis on graphs through random forests. arXiv:1707.04616 (2017).
  • [10] L. Avena, F. Castell, A. Gaudillière, C. Melot: Random Forests and Networks Analysis. arXiv:1711.01635 (2017).
  • [11] L. Avena, A. Gaudillière: Two applications of random spanning forests. J. Theor. Probab., to appear (2018).
  • [12] M. Balázs, A. Folly: An Electric Network for Nonreversible Markov Chains. Amer. Math. Monthly, 123, 657–682 (2016).
  • [13] J. Beltrán, E. Chavez, C. Landim: From coalescing random walks on a torus to Kingman’s coalescent. arXiv:1803.03199 (2018).
  • [14] J. Beltrán, M. Jara, C. Landim: A martingale problem for an absorbed diffusion: the nucleation phase of condensing zero range processes. Probab. Theory Relat. Fields 169, 1169–1220 (2017).
  • [15] J. Beltrán, C. Landim: Tunneling and metastability of continuous time Markov chains. J. Stat. Phys. 140, 1065–1114 (2010).
  • [16] J. Beltrán, C. Landim: Metastability of reversible condensed zero range processes on a finite set. Probab. Theory Relat. Fields 152, 781–807 (2012).
  • [17] J. Beltrán, C. Landim: Metastability of reversible finite state Markov processes. Stoch. Proc. Appl. 121, 1633–1677 (2011).
  • [18] J. Beltrán, C. Landim: Tunneling of the Kawasaki dynamics at low temperatures in two dimensions. Ann. Inst. Henri Poincaré Probab. Stat. 51, 59–88 (2015).
  • [19] J. Beltrán, C. Landim: Tunneling and metastability of continuous time Markov chains II. J. Stat. Phys. 149, 598–618 (2012).
  • [20] J. Beltrán, C. Landim: A Martingale approach to metastability. Probab. Th. Rel. Fields. 161, 267–307 (2015).
  • [21] I. Benjamini, J. Hermon: Recurrence of Markov chain traces, preprint arXiv:1711.03479v2 (2017).
  • [22] O. Benois, C. Landim, C. Mourragui: Hitting Times of Rare Events in Markov Chains. J. Stat. Phys. 153, 967–990 (2013).
  • [23] N. Berglund: Kramers’ law: validity, derivations and generalisations. Markov Process. Related Fields, 19, 459–490 (2013).
  • [24] A. Bianchi, A. Gaudillière: Metastable states, quasi-stationary distributions and soft measures. To appear in Stoch. Proc. Appl. 126, 1622–1680 (2016).
  • [25] A. Bianchi, S. Dommers, C. Giardinà: Metastability in the reversible inclusion process. Electron. J. Probab. 22, paper no. 70, (2017).
  • [26] P. Billingsley, Convergence of Probability Measures, 2nd Edition. John Wiley & Sons, 1999.
  • [27] M. Blume: Theory of the first-order magnetic phase change in U${\mathrm{O}}_{2}$. Phys. Rev. 141, 517–524 (1966).
  • [28] F. Bouchet, J. Reygner: Generalisation of the Eyring-Kramers transition rate formula to irreversible diffusion processes, preprint arxiv:1507.02104 (2015).
  • [29] A. Bovier, M. Eckhoff, V. Gayrard, M. Klein: Metastability in stochastic dynamics of disordered mean field models. Probab. Theory Relat. Fields 119, 99–161 (2001).
  • [30] A. Bovier, M. Eckhoff, V. Gayrard, M. Klein: Metastability in reversible diffusion processes. I. Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc. 6, 399–424 (2004).
  • [31] A. Bovier, F. den Hollander: Metastability: a potential-theoretic approach. Grundlehren der mathematischen Wissenschaften 351, Springer, Berlin, 2015.
  • [32] C. J. Burke, M. Rosenblatt: A Markovian function of a Markov chain. Ann. Math. Statist. 29, 1112–1122 (1958).
  • [33] M. Cameron, E. Vanden-Eijnden: Flows in Complex Networks: Theory, Algorithms, and Application to Lennard–Jones Cluster Rearrangement. J. Stat. Phys. 156, 427–454 (2014).
  • [34] J. Cao, P. Chleboun, S. Grosskinsky: Dynamics of condensation in the totally asymmetric inclusion process. J. Stat. Phys. 155, 523–543 (2014).
  • [35] P. Caputo, H. Lacoin, F. Martinelli, F. Simenhaus and F. L. Toninelli: Polymer dynamics in the depinned phase: metastability with logarithmic barriers. Probab. Theory Related Fields 153, 587–641 (2012).
  • [36] H. W. Capel: On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting. Physica 32, 966–988 (1966); 33, 295–331 (1967); 37, 423–441 (1967).
  • [37] P. Caputo, F. Martinelli and F. L. Toninelli: On the approach to equilibrium for a polymer with adsorption and repulsion. Elect. J. Probab. 13, 213–258 (2008).
  • [38] M. Cassandro, A. Galves, E. Olivieri, M. E. Vares: Metastable behavior of stochastic dynamics: A pathwise approach. J. Stat. Phys. 35, 603–634 (1984).
  • [39] Y.-X. Chau, C. Connaughton, S. Grosskinsky: Explosive condensation in symmetric mass transport models. J. Stat. Mechanics: Theory and Experiment, page P11031 (2015).
  • [40] Y. T. Chen, J. Choi, J. T. Cox: On the convergence of densities of finite voter models to the Wright-Fisher diffusion. Ann. Inst. H. Poincaré Probab. Statist. 52, 286–322 (2016).
  • [41] P. Chleboun, S. Grosskinsky: Finite size effects and metastability in zero-Range condensation. J. Stat. Phys. 140, 846–872 (2010).
  • [42] P. Chleboun, S. Grosskinsky: Condensation in stochastic particle systems with stationary product measures. J. Stat. Phys. 154, 432–465 (2014).
  • [43] P. Chleboun, S. Grosskinsky: A dynamical transition and metastability in a size-dependent zero-range process. Journal of Physics A: Mathematical and Theoretical, 48, p. 055001, (2015).
  • [44] E. N. M. Cirillo, F. R. Nardi: Relaxation height in energy landscapes: an application to multiple metastable states. Journal of Statistical Physics 150, 1080–1114 (2013).
  • [45] E. Cirillo, F. Nardi, J. Sohier: Metastability for general dynamics with rare transitions: escape time and critical configurations. J. Stat. Phys. 161, 365–403 (2015)
  • [46] E. N. M. Cirillo, F. R. Nardi, C. Spitoni: Sum of exit times in a series of two metastable states. Eur. Phys. J. Spec. Top. 226, 2421–2438 (2017).
  • [47] E. N. M. Cirillo, E. Olivieri: Metastability and nucleation for the Blume-Capel model. Different mechanisms of transition. J. Stat. Phys. 83, 473–554 (1996).
  • [48] C. Cooper, A. Frieze, T. Radzik: Multiple random walks in random regular graphs. SIAM J. Discrete Math. 23, 1738–1761 (2009).
  • [49] A. Cortines, J. Gold, O. Louidor: Dynamical freezing in a spin glass system with logarithmic correlations. Electron. J. Probab. 23, paper 59 (2018).
  • [50] J. T. Cox: Coalescing random walks and voter model consensus times on the torus in $Z^{d}$. Ann. Probab. 17, 1333–1366 (1989).
  • [51] P. Doyle: Energy for Markov chains. Unpublished manuscript available at http://www.math.dartmouth.edu/~doyle (1994).
  • [52] P. G. Doyle, J. L. Snell: Random walks and electric networks, volume 22 of Carus Mathematical Monographs. Mathematical Association of America, Washington, DC, 1984. http://arxiv.org/abs/math/0001057.
  • [53] R. Durrett: Some features of the spread of epidemics and information on a random graph. Proc. Nat. Acad. Sci. USA 107 4491–4498 (2010).
  • [54] E. Weinan, E. Vanden-Eijnden: Towards a theory of transition paths. J. Stat. Phys. 123, 503–523 (2006).
  • [55] S. N. Ethier, Th. G. Kurtz: Markov processes. Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1986.
  • [56] M. R. Evans: Phase transitions in one-dimensional nonequilibrium systems. Braz. J. Phys. 30, 42–57 (2000).
  • [57] L. C. Evans, P. R. Tabrizian: Asymptotic for scaled Kramers-Smoluchowski equations. SIAM J. Math. Anal. 48, 2944–2961 (2016).
  • [58] H. Eyring: The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935).
  • [59] L. Fajfrová, T. Gobron, E. Saada: Invariant measures of mass migration processes. Electron. J. Probab. 21, article 60, (2016).
  • [60] R. Fernandez, F. Manzo, F. Nardi, E. Scoppola, J. Sohier: Conditioned, quasi-stationary, restricted measures and metastability. Ann. Appl. Probab. (2015).
  • [61] R. Fernandez, F. Manzo, F. Nardi, E. Scoppola: Asymptotically exponential hitting times and metastability: a pathwise approach without reversibility. Electron. J. Probab. (2015).
  • [62] L. R. G. Fontes, P. H. S. Lima: Convergence of symmetric trap models in the hypercube. New Trends in Mathematical Physics, 285–297, ed. V. Sidoravičius, Springer, Netherlands (2009).
  • [63] L. R. G. Fontes, P. Mathieu: $K$-processes, scaling limit and aging for the trap model in the complete graph. Ann. Probab. 36, 1322–1358 (2008).
  • [64] M. I. Freidlin, A. D. Wentzell: Random perturbations of dynamical systems. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 260. Springer-Verlag, New York, 1998.
  • [65] D. Gabrielli, C. Valente: Which random walks are cyclic? ALEA, Lat. Am. J. Probab. Math. Stat. 9, 231–267 (2012).
  • [66] A. Gaudillière: Condenser physics applied to Markov chains: A brief introduction to potential theory. arXiv:0901.3053 (2009).
  • [67] A. Gaudillière, C. Landim: A Dirichlet principle for non reversible Markov chains and some recurrence theorems. Probab. Theory Related Fields 158, 55–89 (2014).
  • [68] C. Godrèche: Dynamics of condensation in zero-range processes. J. Phys. A: Math. Gen. 36, 6313–6328 (2003).
  • [69] C. Godrèche and J. M. Luck: Condensation in the inhomogeneous zero-range process: an interplay between interaction and diffusion disorder. J. Stat. Mechanics: Theory and Experiment, P12013 (2012).
  • [70] B. Gois and C. Landim: Zero-temperature limit of the Kawasaki dynamics for the Ising lattice gas in a large two-dimensional torus. Ann. Probab. 43, 2151–2203 (2015).
  • [71] S. Grosskinsky, F. Redig, K. Vafayi: Condensation in the inclusion process and related models. J. Stat. Phys. 142, 952–974 (2011).
  • [72] S. Grosskinsky, F. Redig, K. Vafayi: Dynamics of condensation in the symmetric inclusion process 18, article no. 66 (2013).
  • [73] S. Grosskinsky, G. M. Schütz, H. Spohn: Condensation in the zero range process: stationary and dynamical properties. J. Statist. Phys. 113, 389–410 (2003).
  • [74] J. Hermon: Reversibility of the non-backtracking random walk, preprint arXiv:1707.01601v1 (2017).
  • [75] J. van’t Hoff: Studies in Chemical Dynamics. Chemical publishing Company, 1896.
  • [76] J. Hood: Phil. Mag. 6, 371 (1878) and 20, 323 (1885).
  • [77] P. Imkeller, I. Pavlyukevich: Metastable behaviour of small noise Lévy-driven diffusions. ESAIM PS 12, 412–437 (2008).
  • [78] M. Jara, C. Landim, A. Teixeira: Quenched scaling limits of trap models. Ann. Probab. 39, 176–223 (2011).
  • [79] M. Jara, C. Landim, A. Teixeira: Universality of trap models in the ergodic time scale. Ann. Probab. 42, 2497–2557 (2014).
  • [80] I. Jeon, P. March, B. Pittel: Size of the largest cluster under zero-range invariant measures. Ann. Probab. 28, 1162–1194 (2000).
  • [81] C. Kipnis, C. M. Newman: The metastable behavior of infrequently observed, weakly random, one dimensional diffusion processes. SIAM J. Appl. Math. 45, 972–982 (1985).
  • [82] T. Komorowski, C. Landim, S. Olla: Fluctuations in Markov Processes, Time Symmetry and Martingale Approximation. Die Grundlehren der mathematischen Wissenschaften 345, Springer-Verlag, Berlin 2012.
  • [83] H. A. Kramers: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940).
  • [84] H. Lacoin, A. Teixeira: A mathematical perspective on metastable wetting. Electron. J. Probab. 20, paper no. 17 (2015).
  • [85] C. Landim: Metastability for a non-reversible dynamics: the evolution of the condensate in totally asymmetric zero range processes. Commun. Math. Phys. 330, 1–32 (2014).
  • [86] C. Landim: Variational formulae for the capacity induced by second-order elliptic differential operators. Proceedings of the International Congress of Mathematicians 2018 (ICM 2018).
  • [87] C. Landim, P. Lemire: Metastability of the two-dimensional Blume-Capel model with zero chemical potential and small magnetic field. J. Stat. Phys. 164, 346–376 (2016).
  • [88] C. Landim, P. Lemire, M. Mourragui: Metastability of the two-dimensional Blume-Capel model with zero chemical potential and small magnetic field on a large torus. To appear in J. Stat. Phys. (2019).
  • [89] C. Landim, M. Loulakis, M. Mourragui: Metastable Markov chains: from the convergence of the trace to the convergence of the finite-dimensional distributions. Electron. J. Probab. 23, paper no. 95 (2018).
  • [90] C. Landim, M. Mariani, I. Seo: A Dirichlet and a Thomson principle for non-selfadjoint elliptic operators, metastability in non-reversible diffusion processes. To appear in Arch. Ration. Mech. Anal., arXiv:1701.00985 (2017).
  • [91] C. Landim, R. Misturini, K. Tsunoda: Metastability of reversible random walks in potential field. J. Stat. Phys. 160, 1449–1482 (2015).
  • [92] C. Landim, I. Seo: Metastability of non-reversible mean-field Potts model with three spins. J. Stat. Phys. 165, 693–726 (2016).
  • [93] C. Landim, I. Seo: Metastability of non-reversible random walks in a potential field, the Eyring-Kramers transition rate formula. Comm. Pure. Appl. Math. 71, 203–266 (2018).
  • [94] C. Landim, I. Seo: Metastability of one-dimensional, non-reversible diffusions with periodic boundary conditions. To appear in Ann. Inst. H. Poincaré, Probab. Statist., arXiv:1710.06672 (2017).
  • [95] C. Landim, T. Xu: Metastability of finite state Markov chains: a recursive procedure to identify slow variables for model reduction. ALEA, Lat. Am. J. Probab. Math. Stat. 13, 725–751, (2016).
  • [96] D. A. Levin, Y. Peres, E. L. Wilmer: Markov Chains and Mixing Times. Amer. Math. Soc., Providence, 2009.
  • [97] P. D. Lax: Functional analysis. Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2002.
  • [98] J. Lu, E. Vanden-Eijnden: Exact dynamical coarse-graining without time-scale separation. J. Chem. Phys. 141, 044109 (2014).
  • [99] F. Manzo, F. Nardi, E. Olivieri, E. Scoppola: On the essential features of metastability: tunnelling time and critical configurations. J. Stat. Phys. 115, 591–642 (2004).
  • [100] F. Manzo, E. Olivieri: Dynamical Blume-Capel model: competing metastable states at infinite volume. J. Stat. Phys. 104, 1029–1090 (2001).
  • [101] P. Metzner, Ch. Schuette, E. Vanden-Eijnden: Transition path theory for Markov jump processes. SIAM Multiscale Model. Simul. 7, 1192–1219 (2009).
  • [102] R. Misturini: Evolution of the ABC model among the segregated configurations in the zero-temperature limit. Ann. Inst. H. Poincaré Probab. Statist. 52, 669–702 (2016).
  • [103] F. R. Nardi, A. Zocca: Tunneling behavior of Ising and Potts models in the low-temperature regime. arXiv:1708.09677 (2017).
  • [104] E. J. Neves, R. H. Schonmann: Critical droplets and metastability for a Glauber dynamics at very low temperatures. Comm. Math. Phys. 137, 209–230 (1991).
  • [105] E. J. Neves, R. H. Schonmann: Behavior of droplets for a class of Glauber dynamics at very low temperature. Probab. Theory Related Fields 91, 331–354 (1992).
  • [106] C. Oh, F. Rezakhanlou: Metastability of zero range processes via Poisson equations, preprint (2019).
  • [107] R. I. Oliveira: On the coalescence time of reversible random walks. Trans. Am. Math. Soc. 364, 2109–2128 (2012).
  • [108] R. I. Oliveira: Mean field conditions for coalescing random walks. Ann. Probab. 41, 3420–3461 (2013).
  • [109] E. Olivieri, E. Scoppola: Markov Chains with Exponentially Small Transition Probabilities: First Exit Problem from a General Domain. I. The Reversible Case J. Stat. Phys. 79, 613–647 (1995).
  • [110] E. Olivieri, E. Scoppola: Markov Chains with Exponentially Small Transition Probabilities: First Exit Problem from a General Domain. II. The General Case J. Stat. Phys. 84, 987–1041 (1996).
  • [111] E. Olivieri and M. E. Vares: Large deviations and metastability. Encyclopedia of Mathematics and its Applications, vol. 100. Cambridge University Press, Cambridge, 2005.
  • [112] R. G. Pinsky: A generalized Dirichlet principle for second order nonselfadjoint elliptic operators. SIAM J. Math. Anal. 19, 204–213 (1988).
  • [113] R. G. Pinsky: A minimax variational formula giving necessary and sufficient conditions for recurrence or transience of multidimensional diffusion processes. Ann. Probab. 16, 662–671 (1988).
  • [114] F. Rezakhanlou, I. Seo: Scaling limit of metastable diffusions, preprint (2018).
  • [115] L. C. G. Rogers, D. Williams: Diffusions, Markov Processes, and Martingales: Volume 1, Foundations. Cambridge University Press, 1994.
  • [116] E. Scoppola: Renormalization group for Markov chains and application to metastability. J. Stat. Phys. 73, 83–121 (1993).
  • [117] I. Seo: Condensation of non-reversible zero-range processes, arXiv:1801.05934 (2018).
  • [118] I. Seo, P. R. Tabrizian: Asymptotics for scaled Kramers-Smoluchowski equations in several dimensions with general potentials, preprint (2017).
  • [119] M. Slowik: A note on variational representations of capacities for reversible and nonreversible Markov chains. Unpublished, Technische Universität Berlin, 2012.
  • [120] D. W. Stroock, S. R. S. Varadhan: Multidimensional diffusion processes. Reprint of the 1997 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2006.
  • [121] M. Sugiura: Metastable behaviors of diffusion processes with small parameter. J. Math. Soc. Japan 47, 755–788 (1995).
  • [122] M. Sugiura: Asymptotic behaviors on the small parameter exit problems and the singularly perturbation problems. Ryukyu Math. J. 14, 79–118 (2001).
  • [123] B. Waclaw, M. R. Evans: Explosive Condensation in a Mass Transport Model. Phys. Rev. Lett. 108, 070601 (2012).