Open Access
2018 TASEP hydrodynamics using microscopic characteristics
Pablo A. Ferrari
Probab. Surveys 15: 1-27 (2018). DOI: 10.1214/17-PS284
Abstract

The convergence of the totally asymmetric simple exclusion process to the solution of the Burgers equation is a classical result. In his seminal 1981 paper, Herman Rost proved the convergence of the density fields and local equilibrium when the limiting solution of the equation is a rarefaction fan. An important tool of his proof is the subadditive ergodic theorem. We prove his results by showing how second class particles transport the rarefaction-fan solution, as characteristics do for the Burgers equation, avoiding subadditivity. Along the way we show laws of large numbers for tagged particles, fluxes and second class particles, and simplify existing proofs in the shock cases. The presentation is self contained.

References

1.

[1] G. Amir, O. Angel, and B. Valkó. The TASEP speed process. Ann. Probab., 39(4):1205–1242, 2011. MR2857238 1225.82039 10.1214/10-AOP561 euclid.aop/1312555796[1] G. Amir, O. Angel, and B. Valkó. The TASEP speed process. Ann. Probab., 39(4):1205–1242, 2011. MR2857238 1225.82039 10.1214/10-AOP561 euclid.aop/1312555796

2.

[2] E. Andjel, P. A. Ferrari, and A. Siqueira. Law of large numbers for the simple exclusion process. Stochastic Process. Appl., 113(2):217–233, 2004. MR2087959 1080.60089 10.1016/j.spa.2004.04.003[2] E. Andjel, P. A. Ferrari, and A. Siqueira. Law of large numbers for the simple exclusion process. Stochastic Process. Appl., 113(2):217–233, 2004. MR2087959 1080.60089 10.1016/j.spa.2004.04.003

3.

[3] E. D. Andjel, M. D. Bramson, and T. M. Liggett. Shocks in the asymmetric exclusion process. Probab. Theory Related Fields, 78(2):231–247, 1988. MR945111 0632.60107 10.1007/BF00322020[3] E. D. Andjel, M. D. Bramson, and T. M. Liggett. Shocks in the asymmetric exclusion process. Probab. Theory Related Fields, 78(2):231–247, 1988. MR945111 0632.60107 10.1007/BF00322020

4.

[4] E. D. Andjel and M. E. Vares. Hydrodynamic equations for attractive particle systems on $\mathbf{Z}$. J. Statist. Phys., 47(1–2):265–288, 1987.[4] E. D. Andjel and M. E. Vares. Hydrodynamic equations for attractive particle systems on $\mathbf{Z}$. J. Statist. Phys., 47(1–2):265–288, 1987.

5.

[5] O. Angel. The stationary measure of a 2-type totally asymmetric exclusion process. J. Combin. Theory Ser. A, 113(4):625–635, 2006. 1087.60067 10.1016/j.jcta.2005.05.004[5] O. Angel. The stationary measure of a 2-type totally asymmetric exclusion process. J. Combin. Theory Ser. A, 113(4):625–635, 2006. 1087.60067 10.1016/j.jcta.2005.05.004

6.

[6] C. Bahadoran, H. Guiol, K. Ravishankar, and E. Saada. Euler hydrodynamics of one-dimensional attractive particle systems. Ann. Probab., 34(4):1339–1369, 2006. 1101.60075 10.1214/009117906000000115 euclid.aop/1158673321[6] C. Bahadoran, H. Guiol, K. Ravishankar, and E. Saada. Euler hydrodynamics of one-dimensional attractive particle systems. Ann. Probab., 34(4):1339–1369, 2006. 1101.60075 10.1214/009117906000000115 euclid.aop/1158673321

7.

[7] C. Bahadoran, H. Guiol, K. Ravishankar, and E. Saada. Strong hydrodynamic limit for attractive particle systems on $\mathbb{Z}$. Electron. J. Probab., 15:no. 1, 1–43, 2010. 1193.60113 10.1214/EJP.v15-728[7] C. Bahadoran, H. Guiol, K. Ravishankar, and E. Saada. Strong hydrodynamic limit for attractive particle systems on $\mathbb{Z}$. Electron. J. Probab., 15:no. 1, 1–43, 2010. 1193.60113 10.1214/EJP.v15-728

8.

[8] M. Balázs, E. Cator, and T. Seppäläinen. Cube root fluctuations for the corner growth model associated to the exclusion process. Electron. J. Probab., 11:no. 42, 1094–1132 (electronic), 2006.[8] M. Balázs, E. Cator, and T. Seppäläinen. Cube root fluctuations for the corner growth model associated to the exclusion process. Electron. J. Probab., 11:no. 42, 1094–1132 (electronic), 2006.

9.

[9] G. Ben Arous and I. Corwin. Current fluctuations for TASEP: a proof of the Prähofer-Spohn conjecture. Ann. Probab., 39(1):104–138, 2011.[9] G. Ben Arous and I. Corwin. Current fluctuations for TASEP: a proof of the Prähofer-Spohn conjecture. Ann. Probab., 39(1):104–138, 2011.

10.

[10] A. Benassi and J.-P. Fouque. Hydrodynamical limit for the asymmetric simple exclusion process. Ann. Probab., 15(2):546–560, 1987. 0623.60120 10.1214/aop/1176992158 euclid.aop/1176992158[10] A. Benassi and J.-P. Fouque. Hydrodynamical limit for the asymmetric simple exclusion process. Ann. Probab., 15(2):546–560, 1987. 0623.60120 10.1214/aop/1176992158 euclid.aop/1176992158

11.

[11] A. Benassi, J.-P. Fouque, E. Saada, and M. E. Vares. Asymmetric attractive particle systems on $\mathbf{Z}$: hydrodynamic limit for monotone initial profiles. J. Statist. Phys., 63(3–4):719–735, 1991.[11] A. Benassi, J.-P. Fouque, E. Saada, and M. E. Vares. Asymmetric attractive particle systems on $\mathbf{Z}$: hydrodynamic limit for monotone initial profiles. J. Statist. Phys., 63(3–4):719–735, 1991.

12.

[12] P. J. Burke. The output of a queuing system. Operations Res., 4:699–704 (1957), 1956.[12] P. J. Burke. The output of a queuing system. Operations Res., 4:699–704 (1957), 1956.

13.

[13] A. De Masi, N. Ianiro, A. Pellegrinotti, and E. Presutti. A survey of the hydrodynamical behavior of many-particle systems. In Nonequilibrium phenomena, II, Stud. Statist. Mech., XI, pages 123–294. North-Holland, Amsterdam, 1984. 0567.76006[13] A. De Masi, N. Ianiro, A. Pellegrinotti, and E. Presutti. A survey of the hydrodynamical behavior of many-particle systems. In Nonequilibrium phenomena, II, Stud. Statist. Mech., XI, pages 123–294. North-Holland, Amsterdam, 1984. 0567.76006

14.

[14] A. De Masi, C. Kipnis, E. Presutti, and E. Saada. Microscopic structure at the shock in the asymmetric simple exclusion. Stochastics Stochastics Rep., 27(3):151–165, 1989. 0679.60094 10.1080/17442508908833573[14] A. De Masi, C. Kipnis, E. Presutti, and E. Saada. Microscopic structure at the shock in the asymmetric simple exclusion. Stochastics Stochastics Rep., 27(3):151–165, 1989. 0679.60094 10.1080/17442508908833573

15.

[15] A. De Masi and E. Presutti. Mathematical methods for hydrodynamic limits, volume 1501 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1991. 0754.60122[15] A. De Masi and E. Presutti. Mathematical methods for hydrodynamic limits, volume 1501 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1991. 0754.60122

16.

[16] B. Derrida, S. A. Janowsky, J. L. Lebowitz, and E. R. Speer. Exact solution of the totally asymmetric simple exclusion process: shock profiles. J. Statist. Phys., 73(5–6):813–842, 1993. 1102.60320 10.1007/BF01052811[16] B. Derrida, S. A. Janowsky, J. L. Lebowitz, and E. R. Speer. Exact solution of the totally asymmetric simple exclusion process: shock profiles. J. Statist. Phys., 73(5–6):813–842, 1993. 1102.60320 10.1007/BF01052811

17.

[17] L. C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1998. 0902.35002[17] L. C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1998. 0902.35002

18.

[18] P. A. Ferrari. The simple exclusion process as seen from a tagged particle. Ann. Probab., 14(4):1277–1290, 1986. MR866349 0628.60103 10.1214/aop/1176992369 euclid.aop/1176992369[18] P. A. Ferrari. The simple exclusion process as seen from a tagged particle. Ann. Probab., 14(4):1277–1290, 1986. MR866349 0628.60103 10.1214/aop/1176992369 euclid.aop/1176992369

19.

[19] P. A. Ferrari. Shock fluctuations in asymmetric simple exclusion. Probab. Theory Related Fields, 91(1):81–101, 1992. MR1142763 0744.60117 10.1007/BF01194491[19] P. A. Ferrari. Shock fluctuations in asymmetric simple exclusion. Probab. Theory Related Fields, 91(1):81–101, 1992. MR1142763 0744.60117 10.1007/BF01194491

20.

[20] P. A. Ferrari. Shocks in the Burgers equation and the asymmetric simple exclusion process. In Statistical physics, automata networks and dynamical systems (Santiago, 1990), volume 75 of Math. Appl., pages 25–64. Kluwer Acad. Publ., Dordrecht, 1992. 0764.60105[20] P. A. Ferrari. Shocks in the Burgers equation and the asymmetric simple exclusion process. In Statistical physics, automata networks and dynamical systems (Santiago, 1990), volume 75 of Math. Appl., pages 25–64. Kluwer Acad. Publ., Dordrecht, 1992. 0764.60105

21.

[21] P. A. Ferrari and L. R. G. Fontes. Shocks in asymmetric one-dimensional exclusion processes. Resenhas, 1(1):57–68, 1993. 0849.60096[21] P. A. Ferrari and L. R. G. Fontes. Shocks in asymmetric one-dimensional exclusion processes. Resenhas, 1(1):57–68, 1993. 0849.60096

22.

[22] P. A. Ferrari and L. R. G. Fontes. Current fluctuations for the asymmetric simple exclusion process. Ann. Probab., 22(2):820–832, 1994. 0806.60099 10.1214/aop/1176988731 euclid.aop/1176988731[22] P. A. Ferrari and L. R. G. Fontes. Current fluctuations for the asymmetric simple exclusion process. Ann. Probab., 22(2):820–832, 1994. 0806.60099 10.1214/aop/1176988731 euclid.aop/1176988731

23.

[23] P. A. Ferrari and L. R. G. Fontes. Shock fluctuations in the asymmetric simple exclusion process. Probab. Theory Related Fields, 99(2):305–319, 1994. 0801.60094 10.1007/BF01199027[23] P. A. Ferrari and L. R. G. Fontes. Shock fluctuations in the asymmetric simple exclusion process. Probab. Theory Related Fields, 99(2):305–319, 1994. 0801.60094 10.1007/BF01199027

24.

[24] P. A. Ferrari and L. R. G. Fontes. Poissonian approximation for the tagged particle in asymmetric simple exclusion. J. Appl. Probab., 33(2):411–419, 1996. 0855.60097 10.2307/3215064[24] P. A. Ferrari and L. R. G. Fontes. Poissonian approximation for the tagged particle in asymmetric simple exclusion. J. Appl. Probab., 33(2):411–419, 1996. 0855.60097 10.2307/3215064

25.

[25] P. A. Ferrari, L. R. G. Fontes, and Y. Kohayakawa. Invariant measures for a two-species asymmetric process. J. Statist. Phys., 76(5–6):1153–1177, 1994. 0841.60085 10.1007/BF02187059[25] P. A. Ferrari, L. R. G. Fontes, and Y. Kohayakawa. Invariant measures for a two-species asymmetric process. J. Statist. Phys., 76(5–6):1153–1177, 1994. 0841.60085 10.1007/BF02187059

26.

[26] P. A. Ferrari, P. Gonçalves, and J. B. Martin. Collision probabilities in the rarefaction fan of asymmetric exclusion processes. Ann. Inst. Henri Poincaré Probab. Stat., 45(4):1048–1064, 2009.[26] P. A. Ferrari, P. Gonçalves, and J. B. Martin. Collision probabilities in the rarefaction fan of asymmetric exclusion processes. Ann. Inst. Henri Poincaré Probab. Stat., 45(4):1048–1064, 2009.

27.

[27] P. A. Ferrari and C. Kipnis. Second class particles in the rarefaction fan. Ann. Inst. H. Poincaré Probab. Statist., 31(1):143–154, 1995. 0813.60095[27] P. A. Ferrari and C. Kipnis. Second class particles in the rarefaction fan. Ann. Inst. H. Poincaré Probab. Statist., 31(1):143–154, 1995. 0813.60095

28.

[28] P. A. Ferrari, C. Kipnis, and E. Saada. Microscopic structure of travelling waves in the asymmetric simple exclusion process. Ann. Probab., 19(1):226–244, 1991. 0725.60113 10.1214/aop/1176990542 euclid.aop/1176990542[28] P. A. Ferrari, C. Kipnis, and E. Saada. Microscopic structure of travelling waves in the asymmetric simple exclusion process. Ann. Probab., 19(1):226–244, 1991. 0725.60113 10.1214/aop/1176990542 euclid.aop/1176990542

29.

[29] P. A. Ferrari and J. B. Martin. Stationary distributions of multi-type totally asymmetric exclusion processes. Ann. Probab., 35(3):807–832, 2007. 1117.60089 10.1214/009117906000000944 euclid.aop/1178804315[29] P. A. Ferrari and J. B. Martin. Stationary distributions of multi-type totally asymmetric exclusion processes. Ann. Probab., 35(3):807–832, 2007. 1117.60089 10.1214/009117906000000944 euclid.aop/1178804315

30.

[30] P. A. Ferrari, J. B. Martin, and L. P. R. Pimentel. A phase transition for competition interfaces. Ann. Appl. Probab., 19(1):281–317, 2009. 1185.60109 10.1214/08-AAP542 euclid.aoap/1235140340[30] P. A. Ferrari, J. B. Martin, and L. P. R. Pimentel. A phase transition for competition interfaces. Ann. Appl. Probab., 19(1):281–317, 2009. 1185.60109 10.1214/08-AAP542 euclid.aoap/1235140340

31.

[31] P. A. Ferrari and L. P. R. Pimentel. Competition interfaces and second class particles. Ann. Probab., 33(4):1235–1254, 2005. 1078.60083 10.1214/009117905000000080 euclid.aop/1120224580[31] P. A. Ferrari and L. P. R. Pimentel. Competition interfaces and second class particles. Ann. Probab., 33(4):1235–1254, 2005. 1078.60083 10.1214/009117905000000080 euclid.aop/1120224580

32.

[32] P. L. Ferrari and H. Spohn. Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process. Comm. Math. Phys., 265(1):1–44, 2006. 1118.82032 10.1007/s00220-006-1549-0[32] P. L. Ferrari and H. Spohn. Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process. Comm. Math. Phys., 265(1):1–44, 2006. 1118.82032 10.1007/s00220-006-1549-0

33.

[33] T. E. Harris. Additive set-valued Markov processes and graphical methods. Ann. Probability, 6(3):355–378, 1978. 0378.60106 10.1214/aop/1176995523 euclid.aop/1176995523[33] T. E. Harris. Additive set-valued Markov processes and graphical methods. Ann. Probability, 6(3):355–378, 1978. 0378.60106 10.1214/aop/1176995523 euclid.aop/1176995523

34.

[34] K. Johansson. Shape fluctuations and random matrices. Comm. Math. Phys., 209(2):437–476, 2000. 0969.15008 10.1007/s002200050027[34] K. Johansson. Shape fluctuations and random matrices. Comm. Math. Phys., 209(2):437–476, 2000. 0969.15008 10.1007/s002200050027

35.

[35] C. Kipnis. Central limit theorems for infinite series of queues and applications to simple exclusion. Ann. Probab., 14(2):397–408, 1986. 0601.60098 10.1214/aop/1176992523 euclid.aop/1176992523[35] C. Kipnis. Central limit theorems for infinite series of queues and applications to simple exclusion. Ann. Probab., 14(2):397–408, 1986. 0601.60098 10.1214/aop/1176992523 euclid.aop/1176992523

36.

[36] C. Kipnis and C. Landim. Scaling limits of interacting particle systems, volume 320 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999. 0927.60002[36] C. Kipnis and C. Landim. Scaling limits of interacting particle systems, volume 320 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999. 0927.60002

37.

[37] C. Landim. Hydrodynamical equation for attractive particle systems on $\mathbf{Z}^{d}$. Ann. Probab., 19(4):1537–1558, 1991. 0798.60084 10.1214/aop/1176990222 euclid.aop/1176990222[37] C. Landim. Hydrodynamical equation for attractive particle systems on $\mathbf{Z}^{d}$. Ann. Probab., 19(4):1537–1558, 1991. 0798.60084 10.1214/aop/1176990222 euclid.aop/1176990222

38.

[38] C. Landim. Hydrodynamical limit for asymmetric attractive particle systems on $\mathbf{Z}^{d}$. Ann. Inst. H. Poincaré Probab. Statist., 27(4):559–581, 1991. 0751.60097[38] C. Landim. Hydrodynamical limit for asymmetric attractive particle systems on $\mathbf{Z}^{d}$. Ann. Inst. H. Poincaré Probab. Statist., 27(4):559–581, 1991. 0751.60097

39.

[39] C. Landim. Conservation of local equilibrium for attractive particle systems on $\mathbf{Z}^{d}$. Ann. Probab., 21(4):1782–1808, 1993. 0798.60085 10.1214/aop/1176989000 euclid.aop/1176989000[39] C. Landim. Conservation of local equilibrium for attractive particle systems on $\mathbf{Z}^{d}$. Ann. Probab., 21(4):1782–1808, 1993. 0798.60085 10.1214/aop/1176989000 euclid.aop/1176989000

40.

[40] P. D. Lax. Hyperbolic systems of conservation laws and the mathematical theory of shock waves. Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 11. MR0350216 0268.35062[40] P. D. Lax. Hyperbolic systems of conservation laws and the mathematical theory of shock waves. Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 11. MR0350216 0268.35062

41.

[41] J. L. Lebowitz, E. Presutti, and H. Spohn. Microscopic models of hydrodynamic behavior. J. Statist. Phys., 51(5–6):841–862, 1988. New directions in statistical mechanics (Santa Barbara, CA, 1987). 1086.60531 10.1007/BF01014887[41] J. L. Lebowitz, E. Presutti, and H. Spohn. Microscopic models of hydrodynamic behavior. J. Statist. Phys., 51(5–6):841–862, 1988. New directions in statistical mechanics (Santa Barbara, CA, 1987). 1086.60531 10.1007/BF01014887

42.

[42] T. M. Liggett. Ergodic theorems for the asymmetric simple exclusion process. Trans. Amer. Math. Soc., 213:237–261, 1975. 0322.60086 10.1090/S0002-9947-1975-0410986-7[42] T. M. Liggett. Ergodic theorems for the asymmetric simple exclusion process. Trans. Amer. Math. Soc., 213:237–261, 1975. 0322.60086 10.1090/S0002-9947-1975-0410986-7

43.

[43] T. M. Liggett. Coupling the simple exclusion process. Ann. Probability, 4(3):339–356, 1976. 0339.60091 10.1214/aop/1176996084 euclid.aop/1176996084[43] T. M. Liggett. Coupling the simple exclusion process. Ann. Probability, 4(3):339–356, 1976. 0339.60091 10.1214/aop/1176996084 euclid.aop/1176996084

44.

[44] T. M. Liggett. Ergodic theorems for the asymmetric simple exclusion process. II. Ann. Probability, 5(5):795–801, 1977. 0378.60104 10.1214/aop/1176995721 euclid.aop/1176995721[44] T. M. Liggett. Ergodic theorems for the asymmetric simple exclusion process. II. Ann. Probability, 5(5):795–801, 1977. 0378.60104 10.1214/aop/1176995721 euclid.aop/1176995721

45.

[45] T. M. Liggett. Interacting particle systems. Classics in Mathematics. Springer-Verlag, Berlin, 2005. Reprint of the 1985 original. 1103.82016[45] T. M. Liggett. Interacting particle systems. Classics in Mathematics. Springer-Verlag, Berlin, 2005. Reprint of the 1985 original. 1103.82016

46.

[46] T. Mountford and H. Guiol. The motion of a second class particle for the TASEP starting from a decreasing shock profile. Ann. Appl. Probab., 15(2):1227–1259, 2005. 1069.60091 10.1214/105051605000000151 euclid.aoap/1115137974[46] T. Mountford and H. Guiol. The motion of a second class particle for the TASEP starting from a decreasing shock profile. Ann. Appl. Probab., 15(2):1227–1259, 2005. 1069.60091 10.1214/105051605000000151 euclid.aoap/1115137974

47.

[47] M. Prähofer and H. Spohn. Current fluctuations for the totally asymmetric simple exclusion process. In In and out of equilibrium (Mambucaba, 2000), volume 51 of Progr. Probab., pages 185–204. Birkhäuser Boston, Boston, MA, 2002. 1015.60093[47] M. Prähofer and H. Spohn. Current fluctuations for the totally asymmetric simple exclusion process. In In and out of equilibrium (Mambucaba, 2000), volume 51 of Progr. Probab., pages 185–204. Birkhäuser Boston, Boston, MA, 2002. 1015.60093

48.

[48] F. Rezakhanlou. Hydrodynamic limit for attractive particle systems on $\mathbf{Z}^{d}$. Comm. Math. Phys., 140(3):417–448, 1991. 0738.60098 10.1007/BF02099130 euclid.cmp/1104248092[48] F. Rezakhanlou. Hydrodynamic limit for attractive particle systems on $\mathbf{Z}^{d}$. Comm. Math. Phys., 140(3):417–448, 1991. 0738.60098 10.1007/BF02099130 euclid.cmp/1104248092

49.

[49] F. Rezakhanlou. Evolution of tagged particles in non-reversible particle systems. Comm. Math. Phys., 165(1):1–32, 1994. 0811.60094 10.1007/BF02099734 euclid.cmp/1104271031[49] F. Rezakhanlou. Evolution of tagged particles in non-reversible particle systems. Comm. Math. Phys., 165(1):1–32, 1994. 0811.60094 10.1007/BF02099734 euclid.cmp/1104271031

50.

[50] F. Rezakhanlou. Microscopic structure of shocks in one conservation laws. Ann. Inst. H. Poincaré Anal. Non Linéaire, 12(2):119–153, 1995. 0836.76046 10.1016/S0294-1449(16)30161-5[50] F. Rezakhanlou. Microscopic structure of shocks in one conservation laws. Ann. Inst. H. Poincaré Anal. Non Linéaire, 12(2):119–153, 1995. 0836.76046 10.1016/S0294-1449(16)30161-5

51.

[51] H. Rost. Nonequilibrium behaviour of a many particle process: density profile and local equilibria. Z. Wahrsch. Verw. Gebiete, 58(1):41–53, 1981. 0451.60097 10.1007/BF00536194[51] H. Rost. Nonequilibrium behaviour of a many particle process: density profile and local equilibria. Z. Wahrsch. Verw. Gebiete, 58(1):41–53, 1981. 0451.60097 10.1007/BF00536194

52.

[52] E. Saada. A limit theorem for the position of a tagged particle in a simple exclusion process. Ann. Probab., 15(1):375–381, 1987. 0617.60096 10.1214/aop/1176992275 euclid.aop/1176992275[52] E. Saada. A limit theorem for the position of a tagged particle in a simple exclusion process. Ann. Probab., 15(1):375–381, 1987. 0617.60096 10.1214/aop/1176992275 euclid.aop/1176992275

53.

[53] T. Seppalainen. Translation invariant exclusion processes. Available at  https://www.math.wisc.edu/~seppalai/excl-book/ajo.pdf (2015/11/24).[53] T. Seppalainen. Translation invariant exclusion processes. Available at  https://www.math.wisc.edu/~seppalai/excl-book/ajo.pdf (2015/11/24).

54.

[54] T. Seppäläinen. Coupling the totally asymmetric simple exclusion process with a moving interface. Markov Process. Related Fields, 4(4):593–628, 1998. I Brazilian School in Probability (Rio de Janeiro, 1997).[54] T. Seppäläinen. Coupling the totally asymmetric simple exclusion process with a moving interface. Markov Process. Related Fields, 4(4):593–628, 1998. I Brazilian School in Probability (Rio de Janeiro, 1997).

55.

[55] T. Seppäläinen. Hydrodynamic scaling, convex duality and asymptotic shapes of growth models. Markov Process. Related Fields, 4(1):1–26, 1998.[55] T. Seppäläinen. Hydrodynamic scaling, convex duality and asymptotic shapes of growth models. Markov Process. Related Fields, 4(1):1–26, 1998.

56.

[56] T. Seppäläinen. Existence of hydrodynamics for the totally asymmetric simple $K$-exclusion process. Ann. Probab., 27(1):361–415, 1999.[56] T. Seppäläinen. Existence of hydrodynamics for the totally asymmetric simple $K$-exclusion process. Ann. Probab., 27(1):361–415, 1999.

57.

[57] F. Spitzer. Interaction of Markov processes. Advances in Math., 5:246–290 (1970), 1970. 0312.60060 10.1016/0001-8708(70)90034-4[57] F. Spitzer. Interaction of Markov processes. Advances in Math., 5:246–290 (1970), 1970. 0312.60060 10.1016/0001-8708(70)90034-4

58.

[58] W. D. Wick. A dynamical phase transition in an infinite particle system. J. Statist. Phys., 38(5–6):1015–1025, 1985.[58] W. D. Wick. A dynamical phase transition in an infinite particle system. J. Statist. Phys., 38(5–6):1015–1025, 1985.
Pablo A. Ferrari "TASEP hydrodynamics using microscopic characteristics," Probability Surveys 15(none), 1-27, (2018). https://doi.org/10.1214/17-PS284
Received: 1 April 2017; Published: 2018
Vol.15 • 2018
Back to Top