Publicacions Matemàtiques

Automorphism groups of simplicial complexes of infinite-type surfaces

Jesús Hernández Hernández and Ferrán Valdez

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let $S$ be an orientable surface of infinite genus with a finite number of boundary components. In this work we consider the curve complex $\mathcal{C}(S)$, the nonseparating curve complex $\mathcal{N}(S)$, and the Schmutz graph $\mathcal{G}(S)$ of $S$. When all topological ends of $S$ carry genus, we show that all elements in the automorphism groups $\operatorname{Aut}(\mathcal{C}(S))$, $\operatorname{Aut}(\mathcal{N}(S))$, and $\operatorname{Aut}(\mathcal{G}(S))$ are geometric, i.e., these groups are naturally isomorphic to the extended mapping class group $\operatorname{MCG}^{*}(S)$ of the infinite surface $S$. Finally, we study rigidity phenomena within $\operatorname{Aut}(\mathcal{C}(S))$ and $\operatorname{Aut}(\mathcal{N}(S))$.

Article information

Source
Publ. Mat., Volume 61, Number 1 (2017), 51-82.

Dates
Received: 2 February 2015
Revised: 4 May 2016
First available in Project Euclid: 22 December 2016

Permanent link to this document
https://projecteuclid.org/euclid.pm/1482375624

Digital Object Identifier
doi:10.5565/PUBLMAT_61117_02

Mathematical Reviews number (MathSciNet)
MR3590114

Zentralblatt MATH identifier
06697025

Subjects
Primary: 20F65: Geometric group theory [See also 05C25, 20E08, 57Mxx]

Keywords
Curve complex infinite type surface

Citation

Hernández, Jesús Hernández; Valdez, Ferrán. Automorphism groups of simplicial complexes of infinite-type surfaces. Publ. Mat. 61 (2017), no. 1, 51--82. doi:10.5565/PUBLMAT_61117_02. https://projecteuclid.org/euclid.pm/1482375624


Export citation