Open Access
2014 The Riesz transform, rectifiability, and removability for Lipschitz harmonic functions
Fedor Nazarov, Xavier Tolsa, Alexander Volberg
Publ. Mat. 58(2): 517-532 (2014).

Abstract

We show that, given a set $E\subset{\mathbb R}^{n+1}$ with finite $n$-Hausdorff measure${\mathcal H}^n$, if the $n$-dimensional Riesz transform

$$R_{{\mathcal H}^n{\lfloor} E} f(x) = \int_{E} \frac{x-y}{|x-y|^{n+1}}\,f(y)\,{\mathcal H}^n(y)$$

is bounded in $L^2({\mathcal H}^n{\lfloor} E)$, then $E$ is $n$-rectifiable. From this result we deduce that a compact set $E\subset{\mathbb R}^{n+1}$ with ${\mathcal H}^n(E)<\infty$ is removable for Lipschitz harmonic functions if and only if it is purely $n$-unrectifiable, thus proving the analog of Vitushkin's conjecture in higher dimensions.

Citation

Download Citation

Fedor Nazarov. Xavier Tolsa. Alexander Volberg. "The Riesz transform, rectifiability, and removability for Lipschitz harmonic functions." Publ. Mat. 58 (2) 517 - 532, 2014.

Information

Published: 2014
First available in Project Euclid: 21 July 2014

zbMATH: 1312.44005
MathSciNet: MR3264510

Subjects:
Primary: 28A75 , 42B20
Secondary: 31B25

Keywords: Lipschitz harmonic functions , rectifiability , Riesz transform

Rights: Copyright © 2014 Universitat Autònoma de Barcelona, Departament de Matemàtiques

Vol.58 • No. 2 • 2014
Back to Top