Publicacions Matemàtiques
- Publ. Mat.
- Volume EXTRA (2014), 529-541.
Bautin ideals and Taylor domination
Abstract
We consider families of analytic functions with Taylor coefficients\guio{polynomials} in the parameter $\lambda$: $f_\lambda(z)=\sum_{k=0}^\infty a_k(\lambda) z^k$, $a_k \in {\mathbb C}[\lambda]$. Let $R(\lambda)$ be the radius of convergence of $f_\lambda$. The "Taylor domination'' property for this family is the inequality of the following form: for certain fixed~$N$ and $C$ and for each $k\geq N+1$ and $\lambda,
$|a_{k}(\lambda)|R^{k}(\lambda)\leq C \max_{i=0,\dotsc,N} |a_{i}(\lambda)|R^{i}(\lambda).$
Taylor domination property implies a uniform in $\lambda$ bound on the number of zeroes of~$f_\lambda$. In this paper we discuss some known and new results providing Taylor domination (usually, in a smaller disk) via the Bautin approach. In particular, we give new conditions on $f_\lambda$ which imply Taylor domination in the full disk of convergence. We discuss Taylor domination property also for the generating functions of the Poincar\'e type linear recurrence relations.
Article information
Source
Publ. Mat., Volume EXTRA (2014), 529-541.
Dates
First available in Project Euclid: 19 May 2014
Permanent link to this document
https://projecteuclid.org/euclid.pm/1400505247
Mathematical Reviews number (MathSciNet)
MR3211848
Zentralblatt MATH identifier
1304.30004
Subjects
Primary: 34C05: Location of integral curves, singular points, limit cycles 34C25: Periodic solutions 30B10: Power series (including lacunary series)
Keywords
Bautin ideals Taylor domination Turan Lemma Poincarç-type recurrence
Citation
Yomdin, Y. Bautin ideals and Taylor domination. Publ. Mat. EXTRA (2014), 529--541. https://projecteuclid.org/euclid.pm/1400505247