Publicacions Matemàtiques

Group Actions on Algebraic Cell Complexes

P. H. Kropholler and C. T. C. Wall

Full-text: Open access

Abstract

We establish an algebraic version of the classical result that a $G$-map $f$ between $G$-complexes which restricts to a homotopy equivalence $f^H$ on $H$-fixed sets for all subgroups $H$ of $G$ is a $G$-homotopy equivalence. This is used to give an alternative proof of a theorem of Bouc. We also include a number of illustrations and applications.

Article information

Source
Publ. Mat., Volume 55, Number 1 (2011), 3-18.

Dates
First available in Project Euclid: 25 February 2011

Permanent link to this document
https://projecteuclid.org/euclid.pm/1298670081

Mathematical Reviews number (MathSciNet)
MR2779573

Zentralblatt MATH identifier
1216.55007

Subjects
Primary: 57Q05: General topology of complexes 20J05: Homological methods in group theory

Keywords
Cell complex group action equivariant homotopy

Citation

Kropholler, P. H.; Wall, C. T. C. Group Actions on Algebraic Cell Complexes. Publ. Mat. 55 (2011), no. 1, 3--18. https://projecteuclid.org/euclid.pm/1298670081


Export citation

References

  • S. Bouc, Le complexe de chaînes d'un $G$-complexe simplicial acyclique, J. Algebra 220(2) (1999), 415\Ndash436.
  • K. S. Brown, “Cohomology of groups”, Corrected reprint of the 1982 original, Graduate Texts in Mathematics 87, Springer-Verlag, New York, 1994.
  • A. Dress, Induction and structure theorems for Grothendieck and Witt rings of orthogonal representations of finite groups, Bull. Amer. Math. Soc. 79 (1973), 741\Ndash745.
  • A. W. M. Dress, Induction and structure theorems for orthogonal representations of finite groups, Ann. of Math. (2) 102(2) (1975), 291\Ndash325.
  • E. E. Floyd, Orbit spaces of finite transformation groups. I, Duke Math. J. 20 (1953), 563\Ndash567.
  • E. E. Floyd, Orbit spaces of finite transformation groups. II, Duke Math. J. 22 (1955), 33\Ndash38.
  • E. E. Floyd, Periodic maps via Smith Theory, in: “Seminar on Transformation Groups”, Annals of Math. Studies 46, Princeton University Press, Princeton, 1960, pp. 35\Ndash47.
  • P. H. Kropholler, On groups of type $({\rm FP})_\infty$, J. Pure Appl. Algebra 90(1) (1993), 55\Ndash67.
  • P. H. Kropholler and G. Mislin, Groups acting on finite-dimensional spaces with finite stabilizers, Comment. Math. Helv. 73(1) (1998), 122\Ndash136.
  • S. Mac Lane, “Homology”, Reprint of the 1975 edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995.
  • W. S. Massey, “Singular homology theory”, Graduate Texts in Mathematics 70, Springer-Verlag, New York-Berlin, 1980.
  • B. E. A. Nucinkis, Cohomology relative to a $G$-set and finiteness conditions, Topology Appl. 92(2) (1999), 153\Ndash171.
  • R. Oliver, Fixed-point sets of group actions on finite acyclic complexes, Comment. Math. Helv. 50 (1975), 155\Ndash177.
  • D. Quillen, Homotopy properties of the poset of nontrivial $p$\guiosubgroups of a group, Adv. in Math. 28(2) (1978), 101\Ndash128.
  • T. tom Dieck, “Transformation groups”, de Gruyter Studies in Mathematics 8, Walter de Gruyter & Co., Berlin, 1987.
  • P. J. Webb, A local method in group cohomology, Comment. Math. Helv. 62(1) (1987), 135\Ndash167.
  • P. J. Webb, A split exact sequence of Mackey functors, Comment. Math. Helv. 66(1) (1991), 34\Ndash69.