Publicacions Matemàtiques

Euler and Navier-Stokes Equations

Peter Constantin

Full-text: Open access

Abstract

We present results concerning the local existence, regularity and possible blow up of solutions to incompressible Euler and Navier-Stokes equations.

Article information

Source
Publ. Mat. Volume 52, Number 2 (2008), 235-265.

Dates
First available in Project Euclid: 5 August 2008

Permanent link to this document
https://projecteuclid.org/euclid.pm/1217964233

Mathematical Reviews number (MathSciNet)
MR2436725

Zentralblatt MATH identifier
1152.76016

Subjects
Primary: 76B03: Existence, uniqueness, and regularity theory [See also 35Q35] 76D05: Navier-Stokes equations [See also 35Q30]

Keywords
Euler equations Navier-Stokes equations Eulerian-Lagrangian description

Citation

Constantin, Peter. Euler and Navier-Stokes Equations. Publ. Mat. 52 (2008), no. 2, 235--265.https://projecteuclid.org/euclid.pm/1217964233


Export citation

References

  • V. I. Arnol'd and B. A. Khesin, Topological methods in hydrodynamics, in: “Annual review of fluid mechanics”, Vol. 24, Annual Reviews, Palo Alto, CA, 1992, pp. 145\Ndash166.
  • J. T. Beale, T. Kato, and A. J. Majda, Remarks on the breakdown of smooth solutions for the $3$-D Euler equations, Comm. Math. Phys. 94(1) (1984), 61\Ndash66.
  • H. Beirão da Veiga and L. Berselli, On the regularizing effect of the vorticity direction in incompressible viscous flows, Differential Integral Equations 15(3) (2002), 345\Ndash356.
  • A. L. Bertozzi and P. Constantin, Global regularity for vortex patches, Comm. Math. Phys. 152(1) (1993), 19\Ndash28.
  • D. Chae, Remarks on the blow-up criterion of the three\guiodimensional Euler equations, Nonlinearity 18(3) (2005), 1021\Ndash1029.
  • D. Chae, A. Córdoba, D. Córdoba, and M. A. Fontelos, Finite time singularities in a 1D model of the quasi-geostrophic equation, Adv. Math. 194(1) (2005), 203\Ndash223.
  • D. Chae and H.-S. Nam, Local existence and blow-up criterion for the Boussinesq equations, Proc. Roy. Soc. Edinburgh Sect. A 127(5) (1997), 935\Ndash946.
  • J.-Y. Chemin, “Perfect incompressible fluids”, Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie, Oxford Lecture Series in Mathematics and its Applications 14, The Clarendon Press, Oxford University Press, New York, 1998.
  • S. Childress, G. R. Ierley, E. A. Spiegel, and W. R. Young, Blow-up of unsteady two-dimensional Euler and Navier-Stokes solutions having stagnation-point form, J. Fluid Mech. 203 (1989), 1\Ndash22.
  • A. J. Chorin, “Vorticity and turbulence”, Applied Mathematical Sciences 103, Springer-Verlag, New York, 1994.
  • A. J. Chorin, Numerical study of slightly viscous flow, J. Fluid Mech. 57(4) (1973), 785\Ndash796.
  • P. Constantin, Note on loss of regularity for solutions of the $3$\guioD incompressible Euler and related equations, Comm. Math. Phys. 104(2) (1986), 311\Ndash326.
  • P. Constantin, Navier-Stokes equations and area of interfaces, Comm. Math. Phys. 129(2) (1990), 241\Ndash266.
  • P. Constantin, Geometric and analytic studies in turbulence, in: “Trends and perspectives in applied mathematics”, Appl. Math. Sci. 100, Springer, New York, 1994, pp. 21\Ndash54.
  • P. Constantin, The Euler equations and nonlocal conservative Riccati equations, Math. Res. Notices 9 (2000), 455\Ndash465.
  • P. Constantin, An Eulerian-Lagrangian approach for incompressible fluids: local theory, J. Amer. Math. Soc. 14(2) (2001), 263\Ndash278 (electronic).
  • P. Constantin, An Eulerian-Lagrangian approach to the Navier-Stokes equations, Comm. Math. Phys. 216(3) (2001), 663\Ndash686.
  • P. Constantin, Near identity transformations for the Navier-Stokes equations, in: “Handbook of mathematical fluid dynamics”, Vol. II, North-Holland, Amsterdam, 2003, pp. 117\Ndash141.
  • P. Constantin, W. E, and E. Titi, Onsager's conjecture on the energy conservation for solutions of Euler's equation, Comm. Math. Phys. 165(1) (1994), 207\Ndash209.
  • P. Constantin and C. Fefferman, Direction of vorticity and the problem of global regularity for the Navier-Stokes equations, Indiana Univ. Math. J. 42(3) (1993), 775\Ndash789.
  • P. Constantin, C. Fefferman, and A. J. Majda, Geometric constraints on potentially singular solutions for the $3$-D Euler equations, Comm. Partial Differential Equations 21(3–4) (1996), 559\Ndash571.
  • P. Constantin and C. Foias, “Navier-Stokes equations”, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988.
  • P. Constantin, A. J. Majda, and E. Tabak, Formation of strong fronts in the $2$-D quasigeostrophic thermal active scalar, Nonlinearity 7(6) (1994), 1495\Ndash1533.
  • P. Constantin, Q. Nie, and N. Schörghofer, Nonsingular surface quasi-geostrophic flow, Phys. Lett. A 241(3) (1998), 168\Ndash172.
  • P. Constantin and J. Wu, The inviscid limit for non-smooth vorticity, Indiana Univ. Math. J. 45(1) (1996), 67\Ndash81.
  • D. Córdoba, On the geometry of solutions of the quasi-geostrophic and Euler equations, Proc. Nat. Acad. Sci. U.S.A. 94(24) (1997), 12769\Ndash12770.
  • D. Córdoba, Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation, Ann. of Math. (2) 148(3) (1998), 1135\Ndash1152.
  • D. Córdoba and C. Fefferman, On the collapse of tubes carried by 3D incompressible flows, Comm. Math. Phys. 222(2) (2001), 293\Ndash298.
  • D. Córdoba, C. Fefferman, and R. de la Llave, On squirt singularities in hydrodynamics, SIAM J. Math. Anal. 36(1 (2004), 204\Ndash213 (electronic).
  • D. Córdoba, C. Fefferman, and J. L. Rodrigo, Almost sharp fronts for the surface quasi-geostrophic equation, Proc. Natl. Acad. Sci. USA 101(9) (2004), 2687\Ndash2691 (electronic).
  • J. Deng, T. Y. Hou, and X. Xinwei, Improved geometric conditions for non-blowup of the 3D incompressible Euler equation, Comm. Partial Differential Equations 31(1–3) (2006), 293\Ndash306.
  • J. Deng, T. Y. Hou, and X. Yu, Geometric properties and nonblowup of 3D incompressible Euler flow, Comm. Partial Differential Equations 30(1–3) (2005), 225\Ndash243.
  • W. E and C.-W. Shu, Small-scale structures in Boussinesq convection, Phys. Fluids 6(1) (1994), 49\Ndash58.
  • D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the notion of an incompressible fluid, Ann. of Math. (2) 92 (1970), 102\Ndash163.
  • L. Escauriaza, G. Seregin, and V. Šverák, $L\sb {3,\infty}$-solutions of Navier-Stokes equations and backward uniqueness, (Russian), Uspekhi Mat. Nauk 58 (2003), no. 2(350), 3\Ndash44; translation in Russian Math. Surveys 58(2) (2003), 211\Ndash250.
  • G. L. Eyink, Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer, Phys. D 78(3–4) (1994), 222\Ndash240.
  • C. Foias, C. Guillopé, and R. Temam, New a priori estimates for Navier-Stokes equations in dimension $3$, Comm. Partial Differential Equations 6(3) (1981), 329\Ndash359.
  • C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal. 87(2) (1989), 359\Ndash369.
  • U. Frisch, “Turbulence”, The legacy of A. N. Kolmogorov, Cambridge University Press, Cambridge, 1995.
  • N. Ju, Geometric depletion of vortex stretch in 3D viscous incompressible flow, J. Math. Anal. Appl. 321(1) (2006), 412\Ndash425.
  • T. Kato, Nonstationary flows of viscous and ideal fluids in $\mathbf{R}\sp{3}$, J. Functional Analysis 9 (1972), 296\Ndash305.
  • P. G. Lemarié-Rieusset, “Recent developments in the Navier-Stokes problem”, Chapman & Hall/CRC Research Notes in Mathematics 431, Chapman & Hall/CRC, Boca Raton, FL, 2002.
  • J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. 63(1) (1934), 193\Ndash248.
  • A. J. Majda and A. L. Bertozzi, “Vorticity and incompressible flow”, Cambridge Texts in Applied Mathematics 27, Cambridge University Press, Cambridge, 2002.
  • K. Ohkitani and P. Constantin, Numerical study of the Eulerian-Lagrangian formulation of the Navier-Stokes equations, Phys. Fluids 15(10) (2003), 3251\Ndash3254.
  • K. Ohkitani and J. D. Gibbon, Numerical study of singularity formation in a class of Euler and Navier-Stokes flows, Phys. Fluids 12(12) (2000), 3181\Ndash3194.
  • K. Ohkitani and M. Yamada, Inviscid and inviscid-limit behavior of a surface quasigeostrophic flow, Phys. Fluids 9(4) (1997), 876\Ndash882.
  • A. Ruzmaikina and Z. Grujić, On depletion of the vortex-stretching term in the 3D Navier-Stokes equations, Comm. Math. Phys. 247(3) (2004), 601\Ndash611.
  • G. Seregin and V. Šverák, Navier-Stokes equations with lower bounds on the pressure, Arch. Ration. Mech. Anal. 163(1) (2002), 65\Ndash86.
  • J. Serrin, Mathematical principles of classical fluid mechanics, in: “Handbuch der Physik” (herausgegeben von S. Flügge), Bd. 8/1, Strömungsmechanik I (Mitherausgeber C. Truesdell), Springer-Verlag, Berlin-Gttingen-Heidelberg, 1959, pp. 125\Ndash263.
  • J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal. 9 (1962), 187\Ndash195.
  • J. T. Stuart, Nonlinear Euler partial differential equations: singularities in their solution, in: “Applied mathematics, fluid mechanics, astrophysics” (Cambridge, MA, 1987), World Sci. Publishing, Singapore, 1988, pp. 81\Ndash95.
  • W. Weber, Uber eine Transformation der hydrodynamischen Gleichungen, J. Reine Angew. Math. 68 (1868), 286\Ndash292.