Publicacions Matemàtiques

Dimension of measures: the probabilistic approach

Yanick Heurteaux

Full-text: Open access

Abstract

Various tools can be used to calculate or estimate the dimension of measures. Using a probabilistic interpretation, we propose very simple proofs for the main inequalities related to this notion. We also discuss the case of quasi-Bernoulli measures and point out the deep link existing between the calculation of the dimension of auxiliary measures and the multifractal analysis.

Article information

Source
Publ. Mat., Volume 51, Number 2 (2007), 243-290.

Dates
First available in Project Euclid: 31 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.pm/1185912163

Mathematical Reviews number (MathSciNet)
MR2334791

Zentralblatt MATH identifier
1134.28003

Subjects
Primary: 28A12: Contents, measures, outer measures, capacities 28A78: Hausdorff and packing measures 60F10: Large deviations
Secondary: 28D05: Measure-preserving transformations 28D20: Entropy and other invariants 60F20: Zero-one laws

Keywords
Hausdorff dimension packing dimension lower and upper dimension of a measure multifractal analysis quasi-Bernoulli measures

Citation

Heurteaux, Yanick. Dimension of measures: the probabilistic approach. Publ. Mat. 51 (2007), no. 2, 243--290. https://projecteuclid.org/euclid.pm/1185912163


Export citation

References

  • J. Barral, Moments, continuité, et analyse multifractale des martingales de Mandelbrot, Probab. Theory Related Fields 113(4) (1999), 535\Ndash569.
  • J. Barral, Differentiability of multiplicative processes related to branching random walks, Ann. Inst. H. Poincaré Probab. Statist. 36(4) (2000), 407\Ndash417.
  • J. Barral, Continuity of the multifractal spectrum of a random statistically self-similar measure, J. Theoret. Probab. 13(4) (2000), 1027\Ndash1060.
  • A. Batakis, Harmonic measure of some Cantor type sets, Ann. Acad. Sci. Fenn. Math. 21(2) (1996), 255\Ndash270.
  • A. Batakis and Y. Heurteaux, On relations between entropy and Hausdorff dimension of measures, Asian J. Math. 6(3) (2002), 399\Ndash408.
  • T. Bedford, Dimension and dynamics for fractal recurrent sets, J. London Math. Soc. (2) 33(1) (1986), 89\Ndash100.
  • T. Bedford, Applications of dynamical systems theory to fractals-a study of cookie-cutter Cantor sets, in: “Fractal geometry and analysis” (Montreal, PQ, 1989), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 346, Kluwer Acad. Publ., Dordrecht, 1991, pp. 1\Ndash44.
  • F. Ben Nasr, Analyse multifractale de mesures, C. R. Acad. Sci. Paris Sér. I Math. 319(8) (1994), 807\Ndash810.
  • F. Ben Nasr, I. Bhouri and Y. Heurteaux, The validity of the multifractal formalism: results and examples, Adv. Math. 165(2) (2002), 264\Ndash284.
  • A. S. Besicovitch, On the sum of digits of real numbers represented in the dyadic system, Math. Ann. 110(1) (1935), 321\Ndash330.
  • P. Billingsley, “Ergodic theory and information”, John Wiley & Sons, Inc., New York-London-Sydney, 1965.
  • A. Bisbas, A multifractal analysis of an interesting class of measures, Colloq. Math. 69(1) (1995), 37\Ndash42.
  • A. Bisbas and C. Karanikas, On the Hausdorff dimension of Rademacher Riesz products, Monatsh. Math. 110(1) (1990), 15\Ndash21.
  • J. Bourgain, On the Hausdorff dimension of harmonic measure in higher dimension, Invent. Math. 87(3) (1987), 477\Ndash483.
  • T. Bousch and Y. Heurteaux, Caloric measure on domains bounded by Weierstrass-type graphs, Ann. Acad. Sci. Fenn. Math. 25(2) (2000), 501\Ndash522.
  • G. Brown, G. Michon and J. Peyrière, On the multifractal analysis of measures, J. Statist. Phys. 66(3–4) (1992), 775\Ndash790.
  • L. Carleson, On the support of harmonic measure for sets of Cantor type, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 113\Ndash123.
  • R. Cawley and R. D. Mauldin, Multifractal decompositions of Moran fractals, Adv. Math. 92(2) (1992), 196\Ndash236.
  • C. D. Cutler, The Hausdorff dimension distribution of finite measures in Euclidean space, Canad. J. Math. 38(6) (1986), 1459\Ndash1484.
  • C. D. Cutler, Connecting ergodicity and dimension in dynamical systems, Ergodic Theory Dynam. Systems 10(3) (1990), 451\Ndash462.
  • C. D. Cutler, Strong and weak duality principles for fractal dimension in Euclidean space, Math. Proc. Cambridge Philos. Soc. 118(3) (1995), 393\Ndash410.
  • G. A. Edgar, “Integral, probability, and fractal measures”, Springer-Verlag, New York, 1998.
  • G. A. Edgar and R. D. Mauldin, Multifractal decompositions of digraph recursive fractals, Proc. London Math. Soc. (3) 65(3) (1992), 604\Ndash628.
  • H. G. Eggleston, The fractional dimension of a set defined by decimal properties, Quart. J. Math., Oxford Ser. 20 (1949), 31\Ndash36.
  • K. Falconer, “Fractal geometry. Mathematical foundations and applications”, John Wiley & Sons, Ltd., Chichester, 1990.
  • K. Falconer, “Techniques in fractal geometry”, John Wiley & Sons, Ltd., Chichester, 1997.
  • A. H. Fan, Sur les dimensions de mesures, Studia Math. 111(1) (1994), 1\Ndash17.
  • D.-J. Feng, Smoothness of the $L\sp q$-spectrum of self-similar measures with overlaps, J. London Math. Soc. (2) 68(1) (2003), 102\Ndash118.
  • D.-J. Feng, The limited Rademacher functions and Bernoulli convolutions associated with Pisot numbers, Adv. Math. 195(1) (2005), 24\Ndash101.
  • D.-J. Feng and K.-S. Lau, The pressure function for products of non-negative matrices, Math. Res. Lett. 9(2–3) (2002), 363\Ndash378.
  • D.-J. Feng and E. Olivier, Multifractal analysis of weak Gibbs measures and phase transition-application to some Bernoulli convolutions, Ergodic Theory Dynam. Systems 23(6) (2003), 1751\Ndash1784.
  • U. Frisch and G. Parisi, On the singularity structure of fully developed turbulence, in: “Turbulence and predictability in geophysical fluid dynamics”, Proceedings of the International Summer School in Physics Enrico Fermi, North Holland, Amsterdam, 1985, pp. 84\Ndash88.
  • J. González Llorente and A. Nicolau, Regularity properties of measures, entropy and the law of the iterated logarithm, Proc. London Math. Soc. (3) 89(2) (2004), 485\Ndash524.
  • Y. Heurteaux, Sur la comparaison des mesures avec les mesures de Hausdorff, C. R. Acad. Sci. Paris Sér. I Math. 321(1) (1995), 61\Ndash65.
  • Y. Heurteaux, Estimations de la dimension inférieure et de la dimension supérieure des mesures, Ann. Inst. H. Poincaré Probab. Statist. 34(3) (1998), 309\Ndash338.
  • Y. Heurteaux, Présentation de travaux en vue de l'habilitation à diriger des recherches, Technical report, Orsay (1999).
  • T.-Y. Hu and K.-S. Lau, Multifractal structure of convolution of the Cantor measure, Adv. in Appl. Math. 27(1) (2001), 1\Ndash16.
  • J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30(5) (1981), 713\Ndash747.
  • P. W. Jones and T. H. Wolff, Hausdorff dimension of harmonic measures in the plane, Acta Math. 161(1–2) (1988), 131\Ndash144.
  • J.-P. Kahane and J. Peyrière, Sur certaines martingales de Benoit Mandelbrot, Advances in Math. 22(2) (1976), 131\Ndash145.
  • J. F. King, The singularity spectrum for general Sierpiński carpets, Adv. Math. 116(1) (1995), 1\Ndash11.
  • K.-S. Lau and S.-M. Ngai, $L\sp q$-spectrum of the Bernoulli convolution associated with the golden ratio, Studia Math. 131(3) (1998), 225\Ndash251.
  • K.-S. Lau and S.-M. Ngai, Multifractal measures and a weak separation condition, Adv. Math. 141(1) (1999), 45\Ndash96.
  • K.-S. Lau and S.-M. Ngai, Second-order self-similar identities and multifractal decompositions, Indiana Univ. Math. J. 49(3) (2000), 925\Ndash972.
  • A. O. Lopes, The dimension spectrum of the maximal measure, SIAM J. Math. Anal. 20(5) (1989), 1243\Ndash1254.
  • N. G. Makarov, On the distortion of boundary sets under conformal mappings, Proc. London Math. Soc. (3) 51(2) (1985), 369\Ndash384.
  • N. G. Makarov, Fine structure of harmonic measure, Algebra i Analiz 10(2) (1998), 1\Ndash62; translation in St. Petersburg Math. J. 10(2) (1999), 217\Ndash268.
  • N. G. Makarov and A. Volberg, The harmonic measure of discontinous fractals, Preprint LOMI E-6-86, Lenningrad (1986).
  • B. B. Mandelbrot, Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier, J. Fluid Mech. 62 (1974), 331\Ndash358.
  • P. Mattila, “Geometry of sets and measures in Euclidean spaces”, Fractals and rectifiability, Cambridge Studies in Advanced Mathematics 44, Cambridge University Press, Cambridge, 1995.
  • R. D. Mauldin and S. C. Williams, Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc. 309(2) (1988), 811\Ndash829.
  • C. McMullen, The Hausdorff dimension of general Sierpiński carpets, Nagoya Math. J. 96 (1984), 1\Ndash9.
  • G. Michon, Mesures de Gibbs sur les Cantor réguliers, Ann. Inst. H. Poincaré Phys. Théor. 58(3) (1993), 267\Ndash285.
  • S.-M. Ngai, A dimension result arising from the $L\sp q$\guiospectrum of a measure, Proc. Amer. Math. Soc. 125(10) (1997), 2943\Ndash2951.
  • L. Olsen, A multifractal formalism, Adv. Math. 116(1) (1995), 82\Ndash196.
  • L. Olsen, Self-affine multifractal Sierpinski sponges in $\mathbb{R}\sp d$, Pacific J. Math. 183(1) (1998), 143\Ndash199.
  • L. Olsen, Dimension inequalities of multifractal Hausdorff measures and multifractal packing measures, Math. Scand. 86(1) (2000), 109\Ndash129.
  • J. Peyrière, Multifractal measures, in: “Probabilistic and stochastic methods in analysis, with applications” (Il Ciocco, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 372, Kluwer Acad. Publ., Dordrecht, 1992, pp. 175\Ndash186.
  • D. A. Rand, The singularity spectrum $f(\alpha)$ for cookie\guiocutters, Ergodic Theory Dynam. Systems 9(3) (1989), 527\Ndash541.
  • R. Riedi, An improved multifractal formalism and self-similar measures, J. Math. Anal. Appl. 189(2) (1995), 462\Ndash490.
  • C. A. Rogers and S. J. Taylor, The analysis of additive set functions in Euclidean space, Acta Math. 101 (1959), 273\Ndash302.
  • D. Ruelle, Repellers for real analytic maps, Ergodic Theory Dynamical Systems 2(1) (1982), 99\Ndash107.
  • B. Testud, Etude d'une classe de mesures autosimilaires: calculs de dimensions et analyse multifractale, PhD. thesis, Université Blaise Pascal (2004).
  • B. Testud, Transitions de phase dans l'analyse multifractale de mesures auto-similaires, C. R. Math. Acad. Sci. Paris 340(9) (2005), 653\Ndash658.
  • B. Testud, Mesures quasi-Bernoulli au sens faible: résultats et exemples, Ann. Inst. H. Poincaré Probab. Statist. 42(1) (2006), 1\Ndash35.
  • B. Testud, Phase transitions for the multifractal analysis of self-similar measures, Nonlinearity 19(5) (2006), 1201\Ndash1217.
  • C. Tricot, Jr., Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc. 91(1) (1982), 57\Ndash74.
  • M. Urbański, The Hausdorff dimension of the graphs of continuous self-affine functions, Proc. Amer. Math. Soc. 108(4) (1990), 921\Ndash930.
  • Y.-L. Ye, Multifractal of self-conformal measures, Nonlinearity 18(5) (2005), 2111\Ndash2133.
  • L. S. Young, Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynamical Systems 2(1) (1982), 109\Ndash124.
  • M. Zinsmeister, “Formalisme thermodynamique et systèmes dynamiques holomorphes”, Panoramas et Synthèses 4, Société Mathématique de France, Paris, 1996.