Pacific Journal of Mathematics

The flexure of a non-uniform beam

E. E. Jones

Article information

Source
Pacific J. Math. Volume 5, Suppl. 1 (1955), 799-806.

Dates
First available in Project Euclid: 20 February 2007

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1171984835

Mathematical Reviews number (MathSciNet)
MR0075059

Zentralblatt MATH identifier
0065.39904

Subjects
Primary: 73.2X

Citation

Jones, E. E. The flexure of a non-uniform beam. Pacific J. Math. 5 (1955), 799--806. https://projecteuclid.org/euclid.pjm/1171984835.


Export citation

References

  • [1] B. Eriksen, Beams of variable moment of inertia, Concr. Constr. Eng. 46, (1951), 177, 207.
  • [2] R. A. Frazer, W. J. Duncan and A. R. Collar, Elementary matrices, 1st. edn. Camb- ridge Univ. Press, 1938.
  • [3] M. F. Gardner and J. L. Barnes,- Transients in linear systems, Vol. 1, 1st. edn., Wiley and Sons, 1942.
  • [4] M. Hetenyi, Deflection of beams of varying cross-section, J. Appl. Mech. 4, (1937), 49.
  • [5] M. Hetenyi, Application of Maclaurin series to the analysis of beams in bending, J. Frank. Inst. 254, (1952), 369.
  • [6] J. C. Jaegar, The solution of one-dimensional boundary value problems by the Lap- lace transformation, Math. Gaz. 23, (1939), 62.
  • [7] J. C. Jaegar, An introduction to the Laplace transformation,1st. edn., Methuen, 1949.
  • [8] T. G. Morrison, Rapid computation of flexural constants, Proc. Amer. Soc. civ. Engrs. 79, (1953), Sep. No. 170.
  • [9] N. O. Myklestad, A simple tabular method of calculatingdeflections and influence coefficients of beams, J. Aero. Sci. 13, (1946), 23.
  • [10] W. H. Thomson, Deflection of beams by the operational method, J. Frank. Inst. 247, (1949), 557.
  • [12] W. H. Thomson, Laplace transformation, 1st. edn., Prentice Hall, 1950.
  • [13] D. V. Widder, The Laplace transform, 1st. edn., Princeton Univ. Press, 1946.