Pacific Journal of Mathematics

On the number of solutions of $u^k+D\equiv w^2(\mod p)$.

Emma Lehmer

Article information

Source
Pacific J. Math., Volume 5, Number 1 (1955), 103-118.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103044613

Mathematical Reviews number (MathSciNet)
MR0067918

Zentralblatt MATH identifier
0064.27803

Subjects
Primary: 10.0X

Citation

Lehmer, Emma. On the number of solutions of $u^k+D\equiv w^2(\mod p)$. Pacific J. Math. 5 (1955), no. 1, 103--118. https://projecteuclid.org/euclid.pjm/1103044613


Export citation

References

  • [1] S. Chowla, The last entry in Gauss' diary, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 244-246.
  • [2] L.E. Dickson, Cyclotomy, higher congruences and Waring*s problem, Amer. J. Math. 57(1935), 391-424.
  • [3] C.F. Gauss, Theoria residuorum biquadratic orum, Werke, 2 , 90.
  • [4] E. Jacobsthal, Anwendungen einer Formel aus der Theorie der quadratischen Reste, Dissertation (Berlin 1906).
  • [5] Emma Lehmer, Onresidue difference sets, Canadian J. Math. 5(1953), 425-432.
  • [6] L. von Schrutka, Eine Beweis fur die Zerlegbarkeitder Primzahlen von der Form 6n+ 1 in ein einfaches undein dreifaches Quadrat, Jn. fur die reine undangew.Math. 140(1911), 252-265.
  • [7] H.S. Vandiver, On the number of solutions of some general types of equations in a finite field, Proc. Nat. Acad. Sci. U.S.A. 32 (1946), 47-52.
  • [7a] H.S. Vandiver, On the number of solutions of certain nonhomogeneous trinomial equations in a finite field, Proc. Nat. Acad. Sci. U.S.A. 31 (1945), 170- 175.
  • [8] A.L. Whiteman, Cyclotomy and Jacobsthal'ssums, Amer. J. Math., 64 (1952), 89-99, and Theorems analogous to Jacobsthal*s theorem, Duke Math. J. 16 (1949), 619-626. BERKELEY, CALIFORNIA