Pacific Journal of Mathematics

On Lie algebras of algebraic linear transformations.

Charles W. Curtis

Article information

Source
Pacific J. Math., Volume 6, Number 3 (1956), 453-466.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103043963

Mathematical Reviews number (MathSciNet)
MR0082057

Zentralblatt MATH identifier
0071.25801

Subjects
Primary: 17.0X

Citation

Curtis, Charles W. On Lie algebras of algebraic linear transformations. Pacific J. Math. 6 (1956), no. 3, 453--466. https://projecteuclid.org/euclid.pjm/1103043963


Export citation

References

  • [1] C. Chevalley, A new kind of relationshipbetween matrices, Amer. J. Math., 6 (1943), 521-531.
  • [2] C. Chevalley, Algebraic Lie algebras, Annals of Math., 48 (1947), 91-100.
  • [3] C. Chevalley, Theorie des Groupes de Lie II (Groupes Algebriques) Paris, 1951.
  • [4] M. Drazin and K. Gruenberg, Commutators in associative rings, Proc. Cambridge Philos. Soc, 49 (1953), 590-594.
  • [5] M. Drazin, Triangular representations of linear algebras, Proc. Cambridge Philos. Soc, 49 (1953), 595-600.
  • [6] K. Gruenberg, Two theorems on Engel groups, Proc. Cambridge Philos. Soc, 49 (1953), 377-380.
  • [7] N. Jacobson, Rational methods in the theory of Lie algebras, Annals of Math., 36 (1935), 875-881.
  • [8] N. Jacobson,Structure theory of simple rings without finiteness assumptiofis, Trans. Amer. Math. Soc, 57 (1945), 228-245.
  • [9] N. Jacobson, Amer. J. Math., 67 (1945), 300-320.
  • [10] N. Jacobson, Une generalisation du theoreme d'Engel, C. R. Acad. Sci. Paris, 234 (1952), 679-681.
  • [11] N. Jacobson, Lie and Jordan triple systems, Amer. J. Math., 71 (1949), 160.
  • [12] J. L. Koszul, Homologie et cohomologie des algebres de Lie, Bull. Soc Math. France, 78 (1950), 65-127.
  • [13] A. G. Kurosch, Gruppentheorie, Berlin, 1953.
  • [14] A. I. Malcev, Solvable Lie algebras, Amer. Math. Soc Translation no. 27.
  • [15] E. Schenkman, Infinite Lie algebras, Duke Math. J., 19 (1952), 529-535.
  • [16] D. Zelinsky, Raising idempotents, Duke Math. J., 21 (1954), 315-322.