Pacific Journal of Mathematics

Coincidence probabilities.

Samuel Karlin and James McGregor

Article information

Source
Pacific J. Math., Volume 9, Number 4 (1959), 1141-1164.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103038889

Mathematical Reviews number (MathSciNet)
MR0114248

Zentralblatt MATH identifier
0092.34503

Subjects
Primary: 60.00

Citation

Karlin, Samuel; McGregor, James. Coincidence probabilities. Pacific J. Math. 9 (1959), no. 4, 1141--1164. https://projecteuclid.org/euclid.pjm/1103038889


Export citation

References

  • [1] R. M. Blumenthal, An extended Markov Property, Trans, A. M.S., 85(1957), 52-72.
  • [2] S. Bochner, Sturm Liouvlle and heat equations etc., P'roc. Conf. Diff. Eqns. Maryland, (1955), 23-48.
  • [3] K.L. Chung, Foundationsof the theory of continuous parameterMarkoffchains, Proc. Third Berkeley Symposium, 2 (1956), 29-40.
  • [4] K.L. Chung, On a basic property of Markov chains, Annals of Math., 68 (1958), 126-149.
  • [5] J. L. Doob, Stochastic processes, New York 1953.
  • [6] E. B. Dynkin, Infinitesimaloperators of Markoff processes, Theory of probability and its applications, 1 (1956), 38-60, (in Russian).
  • [7] E. B. Dynkin, A. Juskevitch, Strong Markov processes, Theory of probability and its applications, 1 (1956), 149-155, (in Russian).
  • [8] F. Gantmacher and M. Krein, Oscillatory matrices and kernels and smallvibrations of mechanical systems, (in Russian), 2nd ed., Moscow 1950.
  • [9] L I . Hirschman and D. V. Widder, The convolution transform, Princeton 1955.
  • [10] G. A. Hunt, Some theorems concerning Brownian motion, Trans. Amer. Math. Soc, 81 (1956), 294-319.
  • [11] G. A. Hunt, Markoff processes and potentials, Illinois Jour. Math., 1 (1957), 44-93.
  • [12] S. Karlin and J., McGregor, A characterization of birth and death processes, Proc. Nat. Acad. Sci., March (1959), 375-379.
  • [13] S. Karlin, Mathematicalmethods and theory in games, programming and economics, Addison Wesley, to appear.
  • [14] S. Karlin and J. McGregor, The differential equations of birth-and-deathprocesses and the Stieltjes moment problem, Trans. Amer. Math. Soc. 85 (1957), 489-546.
  • [15] S. Karlin and J. McGregor, Many server queuing processes with Poisson input and exponential service times, Pacific J. Math., 8 (1958), 87-118.
  • [16] P. Levy, Processus stochastiques et mouvement brownien, Paris 1948.
  • [17] M. Loeve, Probability theory, van Nostrand, 1955 (p. 271, Theorem A).
  • [18] C. Loewner, On totally positive matrices, Math. Zeit., 63 (1955), 338-340.
  • [19] D. Ray, StationaryMarkov processes with continuous path functions, Trans. Amer, Math. Soc, 82 (1956) 452-493.
  • [20] I. J. Schoenberg, On Plya frequency functions, Jour. d'Anal. Math., 1 (1951), 331-374.
  • [21] I. J. Schoenberg, On smoothing operations and their generating functions, Bull. Am. Math. Soc, 59 (1953), 199-230.
  • [22] F. Spitzer, Some theorems concerning 2-dimensional Brownian motion, 87 (1958), 187-197.