Pacific Journal of Mathematics

Bounds for the eigenvalues of some vibrating systems.

Dallas Banks

Article information

Source
Pacific J. Math., Volume 10, Number 2 (1960), 439-474.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103038402

Mathematical Reviews number (MathSciNet)
MR0117378

Zentralblatt MATH identifier
0097.16501

Subjects
Primary: 34.00
Secondary: 35.00

Citation

Banks, Dallas. Bounds for the eigenvalues of some vibrating systems. Pacific J. Math. 10 (1960), no. 2, 439--474. https://projecteuclid.org/euclid.pjm/1103038402


Export citation

References

  • [1] P. R. Beesack, Isopermetric inequalities for the nonhomogeneous clamped rod and plate, J. Math. Mech. 8, pp. 471-482.
  • [2] P. R. Beesack and B. Schwarz, On the zeros of solutions of second order lineardiffe- rential equations, Canadian J. Math., 8 (1956) 504-515.
  • [3] W. Blaschke, Kreis und Kugel, Chelsea Publishing Co., 1949.
  • [4] L. Collatz, Eigenwertprobleme und ihre Numerische Behandlung,Chelsea Publishing Co., 1948.
  • [5] R. Courant and D. Hubert, Methods of Mathematical Physics, Interscience Publishers, 1953.
  • [6] G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge University Press, 1952.
  • [7] E. Jahnke and Emde, Tables of Functions, Dover, 1945.
  • [8] M. G. Krein, On certain problems on the maximum and minimumof characteristic values and on the Lyapunov zones of stability, Amer. Math. Soc. Trans., Series 2, 1, (1955), 163-187.
  • [9] National Bureau of Standards, Tables of Bessel Functions of Fractional Order, Vol. I, Columbia University Press, 1948.
  • [10] Z. Nehari, On the principal frequency of a membrane, Pacific J. Math. 8, (1958) 285- 293.
  • [11] G. Polya and G. Szego, Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, 1951.
  • [12] T. Rado, Subharmonic Functions, Chelsea Publishing Co., 1949.
  • [13] E. C. Titchmarsh, The Theory of Functions, Oxford University Press, 1939.
  • [14] F. G. Tricomi Integral Equations, Interscience Publishers, 1957.
  • [15] B. Schwarz, Bounds for the principal frequency of the non-homogeneous membrane, Pacific J. Math. 7, (1957), 1653-1676.