Pacific Journal of Mathematics

Some spectral properties of positive linear operators.

Helmut Schaefer

Article information

Source
Pacific J. Math., Volume 10, Number 3 (1960), 1009-1019.

Dates
First available in Project Euclid: 14 December 2004

Permanent link to this document
https://projecteuclid.org/euclid.pjm/1103038247

Mathematical Reviews number (MathSciNet)
MR0115090

Zentralblatt MATH identifier
0129.08801

Subjects
Primary: 46.00

Citation

Schaefer, Helmut. Some spectral properties of positive linear operators. Pacific J. Math. 10 (1960), no. 3, 1009--1019. https://projecteuclid.org/euclid.pjm/1103038247


Export citation

References

  • [1] T. Ando, Positive linear operators in semi-ordered linear spaces, J. Fac.Science,Hok- kaido University, Ser. I, XIII, (1957), 214-228.
  • [2] F. F. Bonsall, Endomorphisms of partially ordered vector spaces, J. London Math. Society 30, (1955), 133-144.
  • [3] F. F. Bonsall,Endomorphisms of a partially ordered vector space without order unit, ibidem, 144-153.
  • [4] F. F. Bonsall,Linear operators in complete positive cones, Proc. London Math. Soc. 3, VIII (29), (1958), 53-75.
  • [5] A. Brauer, A new proof of theorems of Perron and Frobenius on non-negative matrices, I. Positive matrices. Duke Math. J., 24, (1957), 367-378.
  • [6] G. Frobenius, Uber Matrizen aus positiven Elementen, Sitz. Ber. Preuss. Akademie der Wiss. Berlin. (1908), 471-476. (1909), 514-518.
  • [7] G. Frobenius,Uber Matrizen aus nicht negativen Elementen, ibidem (1912), 456-477.
  • [8] E. Hopf, Uber lineare Integralgleichungenmit positivem Kern, Sitz. Ber. Preuss. Akademie der Wiss. Berlin. XVIII, (1928), 233-245.
  • [9] R. Jentzsch, Uber Integralgleichungen mit positivem Kern, Crelles J. 141,(1912),235-244.
  • [10] M.G. Krein, et J. Grosberg, Sur la decomposition des fonctionnelles en composantes positives, Dokl. Acad. Sci. U.R.S.S. (N.S.) 25 (1939), 723-726.
  • [11] M. G. Krein, Linear operators leaving invariant a cone in a Banach space, Uspehi Mat. Nauk. (n.s.) 3, no. 1 (23), (1948), 3-95. Amer. Math. Soc. Transl. No.26.
  • [12] O. Perron, Zur Theorie der Matrizes, Math. Ann. 64, (1907), 248-263.
  • [13] C. R. Putnam, On bounded matrices with non-negative elements, Canad. J. Math. X(4), (1958), 587-591.
  • [14] H. Samelson, On the Perron-Frobenius theorem, Michigan Math. J., (1957), 57-59.
  • [15] H. Schaefer, Positive Trans for mationen in lokalkonvexen halbgeordneten Vektorrdumen, Math. Ann. 129, (1955), 323-329.
  • [16] H. Schaefer, Halbgeordnete lokalkonvexe Vektorrume, Math. Ann. 135, (1958), 115-141.
  • [17] H. Schaefer, Halbgeordnete lokalkonvexe Vektorraume, II Math. Ann. 138, (1959),259-286.
  • [18] H. Schaefer, On the singularities of an analytic function with values in a Banach space, Arch. Math. XI, (1960), 40-43.